aws

Custom Labels Guide

Rekognition

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Rekognition Custom Labels Guide

Rekognition: Custom Labels Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Rekognition Custom Labels Guide

Table of Contents

What is Amazon Rekognition Custom Labels?ccciiiiiiiiiiieennnneciiiiiicceiinnnnnnnnsnssssssssccesssasssssssssnes 1
KBY DENETILS ..ttt st e st e e et st e st e st e st e s se e s e e sa et et et et e s banseesaeseeneennanes 1
Choosing to use Amazon Rekognition Custom Labelsccueeoeeeeeeeeieeeeeeeeeceee s 2

Amazon Rekognition Image label detection ... 2
Amazon Rekognition CUStOM LAbELS ...ttt a e nns 3
Are you a first-time Amazon Rekognition Custom Labels user?ecevececenenereeeeeeee e 3

Setting up Amazon Rekognition Custom Labelscccciiiiiiiiiiienennnciciiiiccinninneeessseesssssecccessssssseses 5

Step 1: Create an AWS QCCOUNTiiiiiitececteeecsteete et e et e s see e st e s sae s s s e s saeesseessaesssaesssasssaasssessaesnns 5
Sign UP FOr @n AWS QCCOUNT ...ttt ettt te e e e s st e tesae st e s sesse e e e s e saensanes 6
Create a user with adminiStrative QCCESScceevvivirinieniriretctreree ettt es 6
ProgramimMQatiCc QCCESS ...cccuiiviirriieeeecterteeseeste et estessreesstessaeessaesssaesstesssaesssesssaesssessstesssesssaesssessasesssesnes 7

Step 2: Set UP CONSOLE PEIMUSSIONSccueeuieieieieciectecereee e e tecaesteste s e sses e e e e s esesessessessassassesssensansersensan 9
ALLOWING CONSOLE QCCESS ..uviniiieieeieetieeeeetete e ste e ste s e s e e e e e e s e stestessessassassesseessassesaassansassansassesssssesnaans 9
Accessing external AmMAzon S3 BUCKELSc.coeeeieeeeceetetecee ettt aeaesaenan 11
ASSIGNING PEIMUSSIONS .ceoviiiuiieieiiteeiteestesiteeseeestesstesssessstesssessseesssesssessssessssesssessssssssessssessaesssessssesssees 11

Step 3: Create the CoONSOLE DUCKET ...ttt sa et aens 12

Step 4: Set up the AWS CLI aNd AWS SDKScuiiiieiieetetecteteseseee e e sesaesaestessessesseesesseaesaesseneans 13
INSEALL ThE AWS SDKS ...ttt sttt sttt st ettt st et s s et e e s s s e st e ssaste e ssassessesessanes 13
Grant programMAtiC QCCESSuivviirieriiiceerieerteeste et es st e st e s stess e essae e st esssesssaesssesssaesssessssesssessssesssennes 7
Set UP SDK PEIMISSIONSoiiiiiiiieiierteeiteertesstesstessressteesseesaesssessssessseesssesssaesssessssesssessssesssessssesssessns 17
(@] L= o W o] o 1=T = 1 o] o KPS OO TR T RSOOSR 18

Step 5: (Optional) Encrypt training fileS ...ttt e 22
Decrypting files encrypted with AWS Key Management Serviceccccceeveeevereeenceecreceeceennene 23
Encrypting copied training and test iMAgES ...t 23

Step 6: (Optional) Associate Prior dAtasetscccicececiceneeecee e sa et 24
Using a prior dataset as @ test dataset ... 24

Understanding Amazon Rekognition Custom Labelsccccciiiiiiiiinnnnnnnciiiiccccnnnnnnneenssnesssssscennns 26

Decide YOUr MOEL TYPE ettt e st e st e s e e e e s e e e et et e stasaasseesnenaannans 26
Find objects, scenes, and CONCEPLSccuevueeeeereeeceeteretete ettt te st e st e e e e e e e sa e e e saaaas 27
FINA ODJECT LOCALIONS ..ttt ettt st e e et et a e b s s e e seenaeaanes 28
Find the Location Of Drands ...ttt ettt sa s s s s e ssens 28

CrEate @ MOAEL ettt sa ettt et sb et e a b et e e s se st et e sesaastenaesessenaesansan 29
Create @ PrOJECE .ttt ettt et s st e s s e e s st e s ae e s ae s s sa e s b e e sae e s e e e sa e b e e aeessaessnaennrans 29

Create training and teSt dAtASets ...ttt s e e s e e nnens 30

Rekognition Custom Labels Guide

TrAIN YOUE MOAEL ..ttt ettt te st e st e st e e e e e e e e e et e aesaestessaesaesaesaensansansansansans 31
IMPrOVE YOUT MOAEL ...ttt st et te st e s e e e e e e et et et e saassassessaeneensansansan 32
EVAlUALe YOUR MOAEL ...ttt te e e e et et e b et e s s e s se e e s saennansantans 32
IMProve YOUE MOEL ...ttt ettt e s e e e e et st et e st e s aessaeseeseenaesnenaesaanes 32
SEAMt YOUF MOAEL ettt et et este st e e e s se e e e s et e saestesbessassaesaensensansansansansans 33
Start your Model (CONSOLE) ...ttt saesteste e se e e e e e et e b e besaanas 33
SEAt YOUE MOAEL ..ttt e e et e st e st e s s e e e e e e et e tesaassassessaesnennans 33
ANQALYZE QN IMAGE ..ttt ettt e st e st e st e st e e e e e et et e te st e sbesbassasseesaeseesaessastensassessassessessaessanes 34
STOP YOUE MOAEL ..ttt ettt et e st e st e st e st e e s e e et et et et e stassassaeseesaensensassansansansansen 35
Stop YoUr MOAEL (CONSOLE) ...ttt et sae st e st se e s e e e et et e aassanes 35
StOP YOUr MOAEL (SDK) ..ttt ettt e stesse s s e e s e e et et e stessessassessnensensansansan 35
Getting StArtedccciiiiiiiieeeeeciiiiiceeiiiiiieeanseeeiiissseeeesss 36
TULOMIAL VIAEOS .ttt ettt ettt st et st st s s et et e sae st e sasbasbe e ssesenssnsssassanaen 36
EXQIMPLE PIrOJECLS ..ttt st s e e e e et e st e st e s b et esaesae e s e e sae s et et essassassassassessaensensensansansans 37
IMAgE ClAaSSIHICAtION ..ot et s e e e et e st e ste e sasbe e s e nnans 37
Multi-label image clasSifiCation ...t st 37
Brand dETECLION ...cueveieeteeeeeeer ettt sttt st sttt e s et et s s b et e e s s e sae e ssasean 38

(0] o] [=Tet gl LoTar= | L=« (o] OSSO OTUT TSRO 38
USiNg the eXamPle ProJECES ...ttt te et e e e e e e ae st e ste s s e s aesse e e ennannens 39
Creating the eXampPle PrOJEC ... ettt ettt te st e s e e eeaennan 39
TraiNiNg the MOEL ...ttt sttt e a et s ae st e s aesae e e e e s eaannans 40
USING the MOAEL ...ttt ettt e teere et e e e e e e s b et e st e saassaeseeseesnenaennansans 40
NEXE SEEPS eeteiiiicteetretee ettt et e st e s st s et st e e st e s s ae s e s e e s aa et e e besssaesse e st esssesssaesssaesseesssesssaessseesseenns 40
Step 1: Choose an eXamPLle PrOJECL ... ettt e e e e saesaestestesaasse e e e nnannens 40
Step 2: Train YOUE MOAEL ...ttt et e s teste st e e e e e e e e e et et e saesaessessessnesnennanean 43
SteP 3: StArt YOUIr MOAEL ...ttt e s e st e e e e et et e st et e basse s e s seesn e e ennanean 48
Step 4: Analyze an image With your MOAEL ... aens 49
Getting an eXamMPLe IMAGE ...ttt steste s e e e e e e e e s e st et e saessasse s e eseaneessansanes 54
SteP 5: SLOP YOUI MOAEL ..ottt re e ettt e b e s se e e e e e e e sae st eaassanes 56
STEP B: NEXE STEPS weeiviiieieecieecteetert ettt et e st s e e s sae e st e s sae e s e e s sae s sa e s sesssaesssa e seesssassssessseesseesssesssaesnees 58
CLlasSIfYiNg IMQAGES ...ccceeeeeeniiiiiiiiiiiiiiinnnenneessiiiiseetessans 60
Step 1: COLLECE YOUF IMAGES ...ooieieeeiececeeee ettt te e e e e et e s teste s e s se e e e e e e et e aessassessesseeseennansanes 60
StEP 2: DECIAE YOUR CLASSES ...uveeeeeeieeeeeetetetecte e te e e e e et et e te st e s tessessesse s s e s e e esensessassassessassnessensansan 61
STEP 3: Create @ PrOJECT ittt ettt et e e ste e st e s et e s e e s sae s s e e ssaa e b e e saaessaesssaesssessseasssesnnes 62
Step 4: Create training and test dAtasets ... ciceiececeecece e sa et sae e 63
Step 5: Add 1abels t0 the ProJECt ..ttt anan 68

Rekognition Custom Labels Guide

Step 6: Assign image-level labels to training and test datasetsccceveeveeveciecececccececeeeeee 68
Step 7: Train YOUE MOAEL ..ttt ettt et e s teste st e e e se e e e e e ae st e stesaessessessaesnennanean 70
Step 8: StArt YOUI MOUEL ...ttt s e st s e e e e e et e st et e sbassa s e e seesae e ennannan 75
Step 9: Analyze an image With your MOAEL ... 77
Step 10: STOP YOUE MOUEL ..ttt te et st e s te s te st e s e e e e e e e e e e aestasannas 80
Creating @ MOAELl ... eereeiiiiiieiiiiiiiieeeeeeessiisseeetesnssans 83
Creating @ PrOJECE ..ottt st s st e st e s s te e s e e s ae e s b e s aeesabesssa s stesssaesssasssaesssessaassaanns 83
Creating @ Project (CONSOLE) ..ottt et tesaesteste e e s e e e e s e e et e tasaesaesse s e e snennanes 83
Creating @ ProjeCt (SDK) ..ottt te e rte s teste st e s se e e e e et e s et e saesbessesseeseesaesaensansans 84
Create project request TOrMAL ...ttt sae st r e s aaennan 89
CreatiNg dAtASELS ..cueceicieeeeeeecee ettt e e e e et sa et et e st e st e s te st e e se e e e e et et et e tesesseesaeseeneennanean 89
PUIPOSING dATASEES ...ttt st s e e e e sa et st e st et e s ae e e e e e e e a et etasanes 90
Preparing IMAQGES ...c.veicieeiiiceeeeecteerie st esrteestessress e e sste s st essaesssaesssessstasssesssaesssassssesssessssesssassssessassnes 95
Creating datasets With IMAgES ...ttt st neanan 97
LADELING IMAGES ..ttt ettt st e st e st e s te e e se e e et e s e stesbestassessassaesnansantans 157
DEbUQGQGING AtASELS ..ueeeeieeeceeeeeee ettt e s ae s e et e e e e e e st e st e te b e ssesse e e e e ennenaaneans 166
TrAINING @ MOAEL ettt e st st e st e st e s e s e e e et e s et et e sesbessessaesesssensansansansan 173
Training @ MOl (CONSOLE) ...ttt e e a et st e st e s re s e se e e naens 175
Training @ MOAEL (SDK) ..ottt rte e e e e et sa et e aesaessesse s e s e e e enaesesansansans 179
Debugging MOdel training ..ottt te e e s e e et et e st e s te b e s e eanenennens 189
TEIMINAL BITOIS .ttt ettt sttt st st e st et e e a st et e e be st esassasbensesessassesassanseneses 190
List of non-terminal JSON line validation @rrorsnenennenennenenceseseseee e 192
Understanding the manifest SUMMAIY ... sre e 193
Understanding training and testing validation result manifestsccceeeeeeeneneeccceeceenee 197
Getting the validation FESULLScc ettt ste st s re e e s nannens 202
FIXING TraiNING EITOIS .ottt ettt st sre s st e s ae s s e e s sae s s e esbesssaesssassseasssesssaesssassssasssennnes 205
Terminal MaNIfESt fil@ @ITOIS ..ottt st st se st 206
Terminal Manifest CONTENT EITOIS ..ottt sae e s e 208
Non-Terminal JSON Line Validation ErTOrscccveriviinenininentetneniesteesessesesessessesessessesesses 218
Improving a trained MOdeleiiiiiiiiiiiiiineeneniiiiiieeiiiieeseessssessssssssessssssssssssssssssssssssssssssssssee 241
Metrics for evaluating YoUr MOAEL ...ttt re e se e e b aens 241
Evaluating model PerforManCe ...ttt as 242
ASSUMEA threSNOLAoeiiiieiee ettt st ettt ae st s e s s et s e ssasbesaenans 243
PrECISION ettt ettt s s s e st st e se st e st e bt s ae st e s st e be st e s st ssesnbansasnsanns 243
RECALL ..ttt ettt sttt et s et b e st et e e be st e e s R et et e e e aeneesaeran 244

F T ettt s st s a e s b e s e b e s e b e e s e b e e e e b e e e a e e e R b e e s st e e s raeeera e e s s aaessraeesnneaees 244

Rekognition Custom Labels Guide

USING MIELEICS ceeiiriiiieeieecteeeeetee sttt s e s st e st e st e s sae s s s e s ssessae s seessaessaasssessssesssesssassssessssesssessseesssennses 245
Accessing evaluation MetricsS (CONSOLE)iuivuiiereeeeeeeetecteceece et ra et sae e ve s e e e e e e e saenens 245
Accessing evaluation MEetricS (SDK) ..ottt e e aestestestesse s e e e e s esesaeans 248

Accessing the model SUMMArY file .ottt ens 249

Interpreting the evaluation manifest sNAPShOt ... 251

Accessing the summary file and evaluation manifest snapshot (SDK)ccccceveverveeveeceecnennens 255

Viewing the confusion matrix for @ Model ... 256

Reference: SUMMAIY File ..ottt ettt te st e s e e e e e e e e b et saenas 262
IMProVING @ MOAEL ceueieieeeeeeeee ettt e et et e st estesseese s s e e e s et e saastessassaessensensansansans 264

DAt ettt ettt s b e st b e et e et s b e st e e st e ae et e et e sse s b e entesseenanne 265

Reducing false positives (better PreciSion) ...t 265

Reducing false negatives (better recall) ... 266

RUNNING a train@d MOdeLleuiiiiiiiiiiiieeeeeiiiiieceiiiiteneessseissssseeesss 267
INFEIENCE UNILS ettt ettt ettt s e st et s e b et e e s et e e e sesaestesassensensens 267

Managing throughput with inference UNits ... 268
AVQILADILITY ZONES ..ottt ettt et st e b st e e e e e e e aa et et et e besseeraereenaennan 270
SEArtiNG @ MOEL ..ttt e st e s e e s e e st e st e st e b e b e e se e e e ss e e enaastassansanes 270

Starting or stopping @ MOodel (CONSOLE)ccuevuieeeeieeeeeecteeceeee et saesaesaeeens 271

Starting @ MOAEL (SDK) ..ottt ee e e e e e e s e e s e st e besse s e e s e e e e sa e e e aantensansanes 272
STOPPING @ MOAEL ettt et et et et e st e s beese e e e e e e e s esaa s assassessasssenaensansan 282

Stopping @ MOAEL (CONSOLE) ..ottt ettt e e e s e e e e e e s e ae st e st e sessassessaeseesnennan 282

StoppiNg @ MOAEL (SDK) ..ottt ettt esteste st e e e e e e e e e e s et e sessessasseesaenaennanean 283
Reporting duration and infErenCe UNILS ... sa e aens 292

Analyzing an image with a trained modelcccciiiiiiimrrneeciiiiiiiiiiiiinnneeenniiiiieiiiieeseesssssesses 295
DetectCustomLabels operation reqQUEST ...ttt a e e 322
DetectCustomLabels Operation reSPONSEcccceeeeieierieeeecectece et steste e e e e e aennan 322

MaNQAGING FESOUFICES ...cieiiiiiiieeeeesenssssssseesessnsnse 323
MaNAGING @ PrOJECT ..ttt ettt e st e st e s sre e st e s saaesbe s ae e saessaessssessaesssasssaesssessseesssens 323

DELELING @ PIrOJECL ettt e et st e st e st e b s e e e e e e e e s bebesaassesseesnenaanes 324

Describing @ ProjeCt (SDK) ...ttt st e e e e e se e e saesaestesae s e e e e e e e e aesaasaasanas 334

Creating a project with AWS CloudFormationccccceeeeeeeeieeesecceeeececese e sae s 341
MaNAGING ATASEES ..ottt ettt et et e e s e e et e e et et e s ae st e s e e seese e e enaantentenean 342

ViV o [g Lo I I o - | = 111 OO TSROSO 342

AddiNG MOFE IMAGES ..ottt et te s e e e e e et et e st e sbe st e s e s seesaesaesessesessessassassesssensanes 351

Creating a dataset using an existing dataset (SDK)coeoeoeeeieeiecececeeceeecee e 361

Describing @ dataset (SDK) ...ttt e ste e e s e s e s s e e e et et e ssessasseesnenaaneens 370

Vi

Rekognition Custom Labels Guide

Listing dataset entries (SDK) ...ttt te e a e et e stesaesse s s e e e e aesaesae s 375
Distributing a training dataset (SDK) ..ottt saesae e aan 381
DELeting @ AAtASEL ...ttt sttt ettt e s e e e ae e aennantans 391
MaNAGING @ MOUEL ...ttt e e e e et et e st e s ae s e et e s e e e e s e ae st e testassessassnesaennans 398
DELEtiNg @ MOAEL ...ttt st e e e et a et e sesse e e e e e s e saeaebasassans 399
TAGGING @ MOAEL ettt e s te e et ese e e e e et e b e testessassassassaeseenaennan 408
Describing @ MOdELl (SDK) ..ottt ste st e e e e e e e e e sae st e saesse s e e e e e e e e aesansansans 415
CopYing @ MOAEL (SDK) ettt e sttt cte st e steste e s e e e e e e s e st e se st e sae b assassessaesaansensansanes 423
Custom Labels EXaMPLESceeeciiiiiiiiiiiiieeeennnniiiiiseeceninsssssssssssssssssscssses 460
Improving a model with Model feedback ... 460
Amazon Rekognition Custom Labels demonstrationccceoeeeeiciecececeecececee e 461
Detecting Custom Labels in VIAEOSc.oouiiiieeeeecececteete ettt te e e an e nnens 461
Analyzing images with an AWS Lambda function ... 464
Step 1: Create an AWS Lambda function (CONSOLE)cooveueeerereeeeeeteeeeeee e 464

Step 2: (Optional) Create a layer (CONSOLE)ocveeeieeeeeeececeeeee e saeaens 466

Step 3: Add Python code (CONSOLE)eueiieieeeeceeeeeteteee ettt a et ae s 468

Step 4: Try your Lambda fUNCLION ...ttt 470
SECUNITY ceiiiiiiiieennniiiieiiiiitnnensessssssssssssecssesss 476
Securing Amazon Rekognition Custom Labels projectseveeveeieeeceeceeceeeceeeeeee e 476
Securing DeteCtCUSTOMLADELS ...ttt sa et et esaesbe s e eenennan 477
AWS MANAGEA POLICIES .eveueereieeieeeeeeteteteeeeee ettt et e st e s te st e s e e e e et e s e stesbessessessaesaesaensensansansansanes 478
Guidelines and QUOTLASciiiiiiiiiiiiiieieniiiiiiiiieiiiiieeeessssssssssssssesessass 479
SUPPOITEA REGIONSoeiieieieieeeeee et te e te st e e e e e e et e s et e s sesbessassessaesaessessansassassassesssessensensansansansans 479
QUOTAS ettt eee e e e e s sbas e e e e b e e e e e sa s e e e s ssaseesesssaaee e ssbaaeesssaseeeessaaeeeassraseeennsaaeeenrnraes 479
TEAINING ettt sre s st e s ste s st e st e e saa e st e s ssa e s seessaesssesssaesssaessaasssaesssesseessaessseessaessssessees 479
TOSTING ettt ettt st e st e s st e e st e s s a e e st e e sae e s s e e s s e e s aa e e b e e s e e e b e e s e e e ae e st e e sa et e e aeessaeesaeans 480
DEEECTION <.ttt ettt et ettt s b st et s b e et e s ae s eae st e s at e b e et e sneens 481
MOAEL COPYING ettt e e e et e st e s te st e st e ssesse s e e e e s esaessansassansassassassasssessansantans 481

APl ref@renCecciiiiiiiiiiiiiiiiiiiiniiniss 482
TraiNiNgG YOUE MOAEL ..ttt e et st e st et e s aesbesbe e e e se e e essebe s essansassaesseseensansan 492
PrOJECES ettt ettt ste st e s st e ae e s e s a e e e e e s s ae e st e s b e et e e b e e e e e e b e e s e e e baessaaeaeesraannnes 492
PrOJECT POLICIES .ottt ettt ste st e s te e e e e e a et e st e s e st e b e e s e e e s saesaesaestasensassassanseensensanes 492
DAtASELS ...ttt ettt st et b e st e bt st e et e s ae e b e s sesese et e e atesnans 492
MOAELS <ttt ettt sttt st et s st et e e st et e s b et s b et et e s et et e sa et et esaesebe st esetentenaene 493

TGS ettt et et s e e st e st e e st e e st e s r e e et e e a e e b e s r e e e b e e s R e e e b e e s e e et e e e Rt e et e e s e e e b e e s st e s be e s e e et aenstaeaaanne 492
USING YOUF MOAEL ettt ettt testeete e e e s et e st e s b e s s e e e e seese e e e bestassansassessaesaensensansan 493

vii

Rekognition Custom Labels Guide

DOoCUMENE RISTOIY uuueiiiiiiiiiiiiiieennnniiiiiiiieiiniiesessssssssssssssssessees 494

viii

Rekognition Custom Labels Guide

What is Amazon Rekognition Custom Labels?

With Amazon Rekognition Custom Labels, you can identify the objects, logos, and scenes in images
that are specific to your business needs. For example, you can find your logo in social media posts,
identify your products on store shelves, classify machine parts in an assembly line, distinguish
healthy and infected plants, or detect animated characters in images.

Developing a custom model to analyze images is a significant undertaking that requires time,
expertise, and resources. It often takes months to complete. Additionally, it can require thousands
or tens of thousands of hand-labeled images to provide the model with enough data to accurately
make decisions. Generating this data can take months to gather, and can require large teams of
labelers to prepare it for use in machine learning.

Amazon Rekognition Custom Labels extends Amazon Rekognition’s existing capabilities, which
are already trained on tens of millions of images across many categories. Instead of thousands

of images, you can upload a small set of training images (typically a few hundred images or less)
that are specific to your use case. You can do this by using the easy-to-use console. If your images
are already labeled, Amazon Rekognition Custom Labels can begin training a model in a short
time. If not, you can label the images directly within the labeling interface, or you can use Amazon
SageMaker Al Ground Truth to label them for you.

After Amazon Rekognition Custom Labels begins training from your image set, it can produce a
custom image analysis model for you in just a few hours. Behind the scenes, Amazon Rekognition
Custom Labels automatically loads and inspects the training data, selects the right machine
learning algorithms, trains a model, and provides model performance metrics. You can then use
your custom model through the Amazon Rekognition Custom Labels APl and integrate it into your
applications.

Topics

» Key benefits
» Choosing to use Amazon Rekognition Custom Labels

« Are you a first-time Amazon Rekognition Custom Labels user?

Key benefits

Simplified data labeling

Key benefits 1

Rekognition Custom Labels Guide

The Amazon Rekognition Custom Labels console provides a visual interface to make labeling your
images fast and simple. The interface allows you to apply a label to the entire image. You can also
identify and label specific objects in images using bounding boxes with a click-and-drag interface.
Alternately, if you have a large dataset, you can use Amazon SageMaker Ground Truth to efficiently
label your images at scale.

Automated machine learning

No machine learning expertise is required to build your custom model. Amazon Rekognition
Custom Labels includes automated machine learning (AutoML) capabilities that take care of the
machine learning for you. When the training images are provided, Amazon Rekognition Custom
Labels can automatically load and inspect the data, select the right machine learning algorithms,
train a model, and provide model performance metrics.

Simplified model evaluation, inference, and feedback

You evaluate your custom model's performance on your test set. For every image in the test set,
you can see the side-by-side comparison of the model’s prediction vs. the label assigned. You can
also review detailed performance metrics such as precision, recall, F1 scores, and confidence scores.
You can start using your model immediately for image analysis, or you can iterate and retrain new
versions with more images to improve performance. After you start using your model, you track
your predictions, correct any mistakes, and use the feedback data to retrain new model versions
and improve performance.

Choosing to use Amazon Rekognition Custom Labels

Amazon Rekognition provides two features that you can use to find labels (object, scenes, and
concepts) in images: Amazon Rekognition Custom Labels and Amazon Rekognition Image label

detection. Use the following information to determine which feature you should use.

Amazon Rekognition Image label detection

You can use the label detection feature in Amazon Rekognition Image to identify, classify, and
search for common labels in images and videos—at scale and without having to create a machine
learning model. For example, you can easily detect thousands of common objects, such as cars and
trucks, tomatoes, basketballs, and soccer balls.

If your application needs to find common labels, we recommend using Amazon Rekognition
Image label detection, as you don't need to train a model. To get a list of the labels that Amazon
Rekognition Image label detection finds, see Detecting labels.

Choosing to use Amazon Rekognition Custom Labels 2

https://aws.amazon.com/sagemaker/groundtruth/
https://docs.aws.amazon.com/rekognition/latest/dg/labels.html
https://docs.aws.amazon.com/rekognition/latest/dg/labels.html
https://docs.aws.amazon.com/rekognition/latest/dg/labels.html

Rekognition Custom Labels Guide

If your application needs to find labels not found by Amazon Rekognition Image label detection,
such as custom machine parts on an assembly line, we recommend that you use Amazon
Rekognition Custom Labels.

Amazon Rekognition Custom Labels

You can use Amazon Rekognition Custom Labels to easily train a machine learning model that find
labels (objects, logos, scenes, and concepts) in images that are unique to your business needs.

Amazon Rekognition Custom Labels can classify images (image level predictions) or detect object
locations in an image (object/bounding box level predictions).

Amazon Rekognition Custom Labels provides greater flexibility in the types of objects and scenes
you can detect. For example, you can use Amazon Rekognition Image label detection to find plants
and leaves. To distinguish between healthy, damaged, and infected plants you need to use Amazon
Rekognition Custom Labels.

The following are examples of how you can use Amazon Rekognition Custom Labels.

Identify team logos on player jerseys and helmets

Distinguish between specific machine parts or products on an assembly line

Identify cartoon characters in a media library

Locate products of a specific brand on retail shelves

Classify agricultural produce quality (such as rotten, ripe, or raw)

® Note

Amazon Rekognition Custom Labels is not designed for analyzing faces, detecting text,
or finding unsafe image content in images. To perform these tasks, you can use Amazon
Rekognition Image. For more information, see What Is Amazon Rekognition.

Are you a first-time Amazon Rekognition Custom Labels user?

If you're a first-time user of Amazon Rekognition Custom Labels, we recommend that you read the
following sections in order:

1. Setting up Amazon Rekognition Custom Labels - In this section, you set your account details.

Amazon Rekognition Custom Labels 3

https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html

Rekognition Custom Labels Guide

2. Understanding Amazon Rekognition Custom Labels - In this section, you learn about the

workflow for creating a model.

3. Getting started with Amazon Rekognition Custom Labels - In this section, you train a model
using example projects created by Amazon Rekognition Custom Labels.

4. Classifying images — In this section, you learn how to train a model that classifies images with

datasets that you create.

Are you a first-time Amazon Rekognition Custom Labels user? 4

Rekognition Custom Labels Guide

Setting up Amazon Rekognition Custom Labels

The following instructions show how to set up the Amazon Rekognition Custom Labels console and
SDK.

Note that you can use the Amazon Rekognition Custom Labels console with the following
browsers:

« Chrome — Version 21 or later
« Firefox — Version 27 or later

« Microsoft Edge — Version 88 or later

 Safari — Version 7 or later. Additionally, you can't use Safari to draw bounding boxes with the
Amazon Rekognition Custom Labels console. For more information, see Labeling objects with

bounding boxes.

Before you use Amazon Rekognition Custom Labels for the first time, complete the following tasks:

Topics

o Step 1: Create an AWS account

» Step 2: Set up Amazon Rekognition Custom Labels console permissions

» Step 3: Create the console bucket

o Step 4: Set up the AWS CLI and AWS SDKs

» Step 5: (Optional) Encrypt training files

» Step 6: (Optional) Associate prior datasets with new projects

Step 1: Create an AWS account

In this step, you create an AWS account, create an administrative user, and learn about granting
programmatic access to the AWS SDK.

Topics

« Sign up for an AWS account

+ Create a user with administrative access

Step 1: Create an AWS account 5

Rekognition Custom Labels Guide

« Programmatic access

Sign up for an AWS account
If you do not have an AWS account, complete the following steps to create one.
To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call or text message and entering a
verification code on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root

user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/

and choosing My Account.

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM ldentity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Signin to the AWS Management Console as the account owner by choosing Root user and

entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Sign up for an AWS account 6

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html

Rekognition Custom Labels Guide

Create a user with administrative access

Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Assign access to additional users

1.

In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS

Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Programmatic access 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html

Rekognition

Custom Labels Guide

Which user needs
programmatic access?

Workforce identity

(Users managed in IAM
Identity Center)

IAM

IAM

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)

Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

By

Following the instructions for
the interface that you want to
use.

e For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

e For AWS SDKs, tools, and
AWS APIs, see |IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

« For AWS SDKs and tools,
see Authenticate using

long-term credentials in

Programmatic access

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html

Rekognition Custom Labels Guide

Which user needs To By
programmatic access?

the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Set up Amazon Rekognition Custom Labels console
permissions

To use the Amazon Rekognition console you need add to have appropriate permissions. If you
want to store your training files in a bucket other than the console bucket, you need additional

permissions.

Topics

« Allowing console access

» Accessing external Amazon S3 Buckets

» Assigning permissions

Allowing console access

To use the Amazon Rekognition Custom Labels console, you need the following IAM policy that
covers Amazon S3, SageMaker Al Ground Truth, and Amazon Rekognition Custom Labels. For
information about assigning permissions, see Assigning permissions.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:ListAl1MyBuckets™"

Step 2: Set up console permissions 9

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

Rekognition Custom Labels Guide

1,
"Resource": "*"
},
{
"Sid": "s3Policies",
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:CreateBucket",
"s3:GetBucketAcl",
"s3:GetBucketLocation",
"s3:GetObject",
"s3:GetObjectAcl",
"s3:GetObjectVersion",
"s3:GetObjectTagging",
"s3:GetBucketVersioning",
"s3:GetObjectVersionTagging",
"s3:PutBucketCORS",
"s3:PutLifecycleConfiguration",
"s3:PutBucketPolicy",
"s3:PutObject",
"s3:PutObjectTagging",
"s3:PutBucketVersioning",
"s3:PutObjectVersionTagging"
1,
"Resource": [
"arn:aws:s3:::custom-labels-console-*"
]
I
{
"Sid": "rekognitionPolicies",
"Effect": "Allow",
"Action": [
"rekognition:*"
1,
"Resource": "*"
I
{
"Sid": "groundTruthPolicies",
"Effect": "Allow",
"Action": [
"groundtruthlabeling:*"
1,

Allowing console access 10

Rekognition Custom Labels Guide

"Resource": "*"

Accessing external Amazon S3 Buckets

When you first open the Amazon Rekognition Custom Labels console in a new AWS Region,
Amazon Rekognition Custom Labels creates a bucket (console bucket) that's used to store project
files. Alternatively, you can use your own Amazon S3 bucket (external bucket) to upload the images
or manifest file to the console. To use an external bucket, add the following policy block to the
preceding policy. Replace amzn-s3-demo-bucket with the name of the bucket.

"Sid": "s3ExternalBucketPolicies",

"Effect": "Allow",

"Action": [
"s3:GetBucketAcl",
"s3:GetBucketLocation",
"s3:GetObject",
"s3:GetObjectAcl",
"s3:GetObjectVersion",
"s3:GetObjectTagging",
"s3:ListBucket",
"s3:PutObject"

1,

"Resource": [
"arn:aws:s3:::amzn-s3-demo-bucket*"

Assigning permissions
To provide access, add permissions to your users, groups, or roles:
« Users and groups in AWS IAM lIdentity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

« Users managed in IAM through an identity provider:

Accessing external Amazon S3 Buckets 11

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html

Rekognition Custom Labels Gui

de

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

e |AM users:

« Create a role that your user can assume. Follow the instructions in Create a role for an IAM user

in the IAM User Guide.

e (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the

instructions in Adding permissions to a user (console) in the IAM User Guide.

Step 3: Create the console bucket

You use an Amazon Rekognition Custom Labels project to create and manage your models. When
you first open the Amazon Rekognition Custom Labels console in a new AWS Region, Amazon
Rekognition Custom Labels creates an Amazon S3 bucket (console bucket) to store your projects.
You should note the console bucket name somewhere where you can refer to it later because you
might need to use the bucket name in AWS SDK operations or console tasks, such as creating a
dataset.

The format of the bucket name is custom-labels-console-<region>-<random value>.The
random value ensures that there isn't a collision between bucket names.

To create the console bucket

1. Ensure that the user has the correct permissions. For more information, see Allowing console

access.

2. Signin to the AWS Management Console and open the Amazon Rekognition console at
https://console.aws.amazon.com/rekognition/.

3. Choose Get started.
4. If this is the first time that you've opened the console in the current AWS Region, do the
following in the First Time Set Up dialog box:

a. Copy down the name of the Amazon S3 bucket that's shown. You'll need this information
later.

b. Choose Create S3 bucket to let Amazon Rekognition Custom Labels create an Amazon S3

bucket (console bucket) on your behalf.

5. Close the browser window.

Step 3: Create the console bucket

12

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

Step 4: Set up the AWS CLI and AWS SDKs

You can use Amazon Rekognition Custom Labels with the AWS Command Line Interface (AWS
CLI) and AWS SDKs. If you need to run Amazon Rekognition Custom Labels operations from the
terminal, install the AWS CLI. If you are creating an application, download the AWS SDK for the
programming language that you are using.

Topics

« Install the AWS SDKS

« Grant programmatic access

e Set up SDK permissions

« Call an Amazon Rekognition Custom Labels operation

Install the AWS SDKS

Follow the steps to download and configure the AWS SDKs.
To set up the AWS CLI and the AWS SDKs

« Download and install the AWS CLI and the AWS SDKs that you want to use. This guide provides
examples for the AWS CLI, Java, and Python. For information about installing AWS SDKs, see
Tools for Amazon Web Services.

Grant programmatic access

You can run the AWS CLI and code examples in this guide on your local computer or other AWS
environments, such as an Amazon Elastic Compute Cloud instance. To run the examples, you need
to grant access to the AWS SDK operations that the examples use.

Topics

« Running code on your local computer

e Running code in AWS environments

Step 4: Set up the AWS CLI and AWS SDKs 13

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/setup.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/quickstart.html#installation
https://aws.amazon.com/tools/

Rekognition

Custom Labels Guide

Running code on your local computer

To run code on a local computer, we recommend that you use short-term credentials to grant a
user access to AWS SDK operations. For specific information about running the AWS CLI and code
examples on a local computer, see Using a profile on your local computer.

Users need programmatic access if they want to interact with AWS outside of the AWS

Management Console. The way to grant programmatic access depends on the type of user that's

accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

Workforce identity

(Users managed in IAM
Identity Center)

IAM

IAM

To

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

(Not recommended)
Use long-term credentials to
sign programmatic requests

By

Following the instructions for
the interface that you want to
use.

« For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

« For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

Following the instructions in
Using temporary credentia

s with AWS resources in the
IAM User Guide.

Following the instructions for
the interface that you want to
use.

Grant programmatic access

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

Rekognition Custom Labels Guide

Which user needs To By
programmatic access?

to the AWS CLI, AWS SDKs, or « For the AWS CLI, see
AWS APIs. Authenticating using IAM
user credentials in the AWS

Command Line Interface
User Guide.

e For AWS SDKs and tools,
see Authenticate using

long-term credentials in
the AWS SDKs and Tools
Reference Guide.

e For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Using a profile on your local computer

You can run the AWS CLI and code examples in this guide with the short-term credentials
you create in Running code on your local computer. To get the credentials and other settings

information, the examples use a profile named custom-1labels-access For example:

session = boto3.Session(profile_name='custom-labels-access"')
rekognition_client = session.client("rekognition")

The user that the profile represents must have permissions to call the Amazon Rekognition
Custom Labels SDK operations and other AWS SDK operations needed by the examples. For more
information, see Set up SDK permissions. To assign permissions, see Set up SDK permissions.

To create a profile that works with the AWS CLI and code examples, choose one of the following.
Make sure the name of the profile you create is custom-labels-access.

» Users managed by IAM — Follow the instructions at Switching to an IAM role (AWS CLI).

« Workforce identity (Users managed by AWS IAM Identity Center) — Follow the instructions at
Configuring the AWS CLI to use AWS IAM Identity Center. For the code examples, we recommend

Grant programmatic access 15

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-cli.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html

Rekognition Custom Labels Guide

using an Integrated Development Environment (IDE), which supports the AWS Toolkit enabling
authentication through IAM Identity Center. For the Java examples, see Start building with Java.
For the Python examples, see Start building with Python. For more information, see IAM Identity

Center credentials.

® Note

You can use code to get short-term credentials. For more information, see Switching to an
IAM role (AWS API). For IAM Identity Center, get the short-term credentials for a role by
following the instructions at Getting IAM role credentials for CLI access.

Running code in AWS environments

You shouldn't use user credentials to sign AWS SDK calls in AWS environments, such as production
code running in an AWS Lambda function. Instead, you configure a role that defines the
permissions that your code needs. You then attach the role to the environment that your code runs
in. How you attach the role and make temporary credentials available varies depending on the
environment that your code runs in:

o AWS Lambda function — Use the temporary credentials that Lambda automatically provides
to your function when it assumes the Lambda function's execution role. The credentials are
available in the Lambda environment variables. You don't need to specify a profile. For more
information, see Lambda execution role.

o Amazon EC2 — Use the Amazon EC2 instance metadata endpoint credentials provider. The
provider automatically generates and refreshes credentials for you using the Amazon EC2
instance profile you attach to the Amazon EC2 instance. For more information, see Using an IAM
role to grant permissions to applications running on Amazon EC2 instances

« Amazon Elastic Container Service — Use the Container credentials provider. Amazon ECS sends
and refreshes credentials to a metadata endpoint. A task IAM role that you specify provides a
strategy for managing the credentials that your application uses. For more information, see
Interact with AWS services.

For more information about credential providers, see Standardized credential providers.

Grant programmatic access 16

https://aws.amazon.com/developer/language/java/
https://aws.amazon.com/developer/tools/#IDE_and_IDE_Toolkits
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtogetcredentials.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html

Rekognition Custom Labels Guide

Set up SDK permissions

To use Amazon Rekognition Custom Labels SDK operations, you need access permissions to the
Amazon Rekognition Custom Labels API and the Amazon S3 bucket used for model training.

Topics
» Granting SDK operation permissions

» Policy updates for using the AWS SDK

» Assigning permissions

Granting SDK operation permissions

We recommend that you grant only the permissions required to perform a task (least-privilege
permissions). For example, to call DetectCustomLabels, you need permission to perform
rekognition:DetectCustomLabels. To find the permissions for an operation, check the API
reference.

When you are just starting out with an application, you might not know the specific permissions
you need, so you can start with broader permissions. AWS managed policies provide permissions
to help you get started. You can use the AmazonRekognitionCustomLabelsFullAccess
AWS managed policy to get complete access to the Amazon Rekognition Custom Labels API.

For more information, see AWS managed policy: AmazonRekognitionCustomLabelsFullAccess.

When you know the permissions that your application needs, reduce permissions further by
defining customer managed policies specific to your use cases. For more information, see Customer
managed policies.

To assign permissions, see Assigning permissions.

Policy updates for using the AWS SDK

To use the AWS SDK with the latest release of Amazon Rekognition Custom Labels, you no longer
need to give Amazon Rekognition Custom Labels permissions to access the Amazon S3 bucket that
contains your training and testing images. If you have previously added permissions, You don't
need to remove them. If you choose to, remove any policy from the bucket where the service for
the principal is rekognition.amazonaws. com. For example:

"Principal": {
"Service": "rekognition.amazonaws.com"

Set up SDK permissions 17

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels.html
https://docs.aws.amazon.com/rekognition/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/rekognition/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/rekognition/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-custom-labels-full-access
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies

Rekognition Custom Labels Guide

}

For more information, see Using bucket policies.

Assigning permissions
To provide access, add permissions to your users, groups, or roles:
« Users and groups in AWS IAM ldentity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

« Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

e |AM users:

» Create a role that your user can assume. Follow the instructions in Create a role for an IAM user
in the IAM User Guide.

» (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Call an Amazon Rekognition Custom Labels operation

Run the following code to confirm that you can make calls to the Amazon Rekognition Custom
Labels API. The code lists the projects in your AWS account, in the current AWS Region. If you
haven't previously created a project, the response is empty, but does confirm that you can call the
DescribeProjects operation.

In general, calling an example function requires an AWS SDK Rekognition client and any other
required parameters. The AWS SDK client is declared in the main function.

If the code fails, check that the user that you use has the correct permissions. Also check the AWS
Region that you using as Amazon Rekognition Custom Labels is not available in all AWS Regions.

To call an Amazon Rekognition Custom Labels operation

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

Call an operation 18

https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-policies.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Rekognition Custom Labels Guide

2. Use the following example code to view your projects.

CLI

Use the describe-projects command to list the projects in your account.

aws rekognition describe-projects \
--profile custom-labels-access

Python

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

This example shows how to describe your Amazon Rekognition Custom Labels
projects.

If you haven't previously created a project in the current AWS Region,

the response is an empty list, but does confirm that you can call an

Amazon Rekognition Custom Labels operation.

from botocore.exceptions import ClientError

import boto3

def describe_projects(rekognition_client):
Lists information about the projects that are in in your AWS account
and in the current AWS Region.

param rekognition_client: A Boto3 Rekognition client.
try:
response = rekognition_client.describe_projects()
for project in response["ProjectDescriptions"]:
print("Status: " + project["Status"])
print("ARN: " + project["ProjectArn"])
print()
print("Done!")
except ClientError as err:
print(f"Couldn't describe projects. \n{err}")
raise

Call an operation 19

Rekognition Custom Labels Guide

def main():
Entrypoint for script.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")
describe_projects(rekognition_client)

if __name__ == "__main__":
main()

Java V2

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import java.util.Arraylist;

import java.util.lList;

import java.util.logging.lLevel;
import java.util.logging.lLogger;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.DatasetMetadata;

import

software.amazon.awssdk.services.rekognition.model.DescribeProjectsRequest;

import

software.amazon.awssdk.services.rekognition.model.DescribeProjectsResponse;
import software.amazon.awssdk.services.rekognition.model.ProjectDescription;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;

public class Hello {

Call an operation

20

Rekognition Custom Labels Guide

public static final Logger logger = Logger.getlLogger(Hello.class.getName());
public static void describeMyProjects(RekognitionClient rekClient) {
DescribeProjectsRequest descProjects = null;
// If a single project name is supplied, build projectNames argument

List<String> projectNames = new ArraylList<String>();

descProjects = DescribeProjectsRequest.builder().build();
// Display useful information for each project.

DescribeProjectsResponse resp =
rekClient.describeProjects(descProjects);

for (ProjectDescription projectDescription : resp.projectDescriptions())

System.out.println("ARN: " + projectDescription.projectArn());
System.out.println("Status: " +
projectDescription.statusAsString());
if (projectDescription.hasDatasets()) {
for (DatasetMetadata datasetDescription :
projectDescription.datasets()) {
System.out.println("\tdataset Type: " +
datasetDescription.datasetTypeAsString());
System.out.println("\tdataset ARN: " +
datasetDescription.datasetArn());
System.out.println("\tdataset Status: " +
datasetDescription.statusAsString());
}

}
System.out.println();

public static void main(String[] args) {

try {

Call an operation 21

Rekognition Custom Labels Guide

// Get the Rekognition client
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))
.region(Region.US_WEST_2)
.build();

// Describe projects
describeMyProjects(rekClient);
rekClient.close();
} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",

rekError.getMessage());
System.exit(1l);

Step 5: (Optional) Encrypt training files

You can choose one of the following options to encrypt the Amazon Rekognition Custom Labels
manifest files and image files that are in a console bucket or an external Amazon S3 bucket.

» Use an Amazon S3 key (SSE-S3).

» Use your AWS KMS key.

(@ Note

The calling IAM principal need permissions to decrypt the files. For more information, see
Decrypting files encrypted with AWS Key Management Service.

For information about encrypting an Amazon S3 bucket, see Setting default server-side encryption
behavior for Amazon S3 buckets.

Step 5: (Optional) Encrypt training files 22

https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html#intro-structure-principal%23intro-structure-principal
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/bucket-encryption.html

Rekognition Custom Labels Guide

Decrypting files encrypted with AWS Key Management Service

If you use AWS Key Management Service (KMS) to encrypt your Amazon Rekognition Custom
Labels manifest files and image files, add the 1AM principal that calls Amazon Rekognition Custom
Labels to the key policy of the KMS key. Doing this lets Amazon Rekognition Custom Labels decrypt
your manifest and image files before training. For more information, see My Amazon S3 bucket

has default encryption using a custom AWS KMS key. How can | allow users to download from and
upload to the bucket?

The IAM principal needs the following permissions on the KMS key.

o kms:GenerateDataKey

o kms:Decrypt

For more information, see Protecting Data Using Server-Side Encryption with KMS keys Stored in
AWS Key Management Service (SSE-KMS).

Encrypting copied training and test images

To train your model, Amazon Rekognition Custom Labels makes a copy of your source training
and test images. By default the copied images are encrypted at rest with a key that AWS owns and
manages. You can also choose to use your own AWS KMS key. If you use your own KMS key, you
need the following permissions on the KMS key.

e kms:CreateGrant

o kms:DescribeKey

You optionally specify the KMS key when you train the model with the console or when you call the
CreateProjectVersion operation. The KMS key you use doesn't need to be the same KMS key
that you use to encrypt manifest and image files in your Amazon S3 bucket. For more information,
see Step 5: (Optional) Encrypt training files.

For more information, see AWS Key Management Service concepts. Your source images are

unaffected.

For information about training a model, see Training an Amazon Rekognition Custom Labels

model.

Decrypting files encrypted with AWS Key Management Service 23

https://aws.amazon.com/premiumsupport/knowledge-center/s3-bucket-access-default-encryption/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-bucket-access-default-encryption/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-bucket-access-default-encryption/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys

Rekognition Custom Labels Guide

Step 6: (Optional) Associate prior datasets with new projects

Amazon Rekognition Custom Labels now manages datasets with projects. Earlier (prior) datasets
that you created are read-only and must be associated with a project before you can use them.
When you open the details page for a project with the console, we automatically associate

the datasets that trained the latest version of the project's model with the project. Automatic
association of a dataset with a project doesn't happen if you are using the AWS SDK.

Unassociated prior datasets have never been used to train a model or, were used to train a previous
version of a model. The Prior datasets page shows all of your associated and unassociated datasets.

To use an unassociated prior dataset, you create a new project on the Prior datasets page. The
dataset becomes the training dataset for the new project. You can also create a project for an
already associated dataset as prior datasets can have multiple associations.

To associate a prior dataset to a new project

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

N

In the left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown.

In the left navigation pane, choose Prior datasets.

In the datasets view, choose the prior dataset that you want to associate with a project.
Choose Create project with dataset.

On the Create project page, enter a name for your new project in Project name.

Choose Create project to create the project. The project might take a while to create.

© N O U b~ W

Use the project. For more information, see Understanding Amazon Rekognition Custom Labels.

Using a prior dataset as a test dataset

You can use a prior dataset as the test dataset for an existing project by first associating the prior
dataset with a new project. You then copy the training dataset of the new project to the test
dataset of the existing project.

To use a prior dataset as a test dataset

1. Follow the instructions at Step 6: (Optional) Associate prior datasets with new projects to

associate the prior dataset with a new project.

Step 6: (Optional) Associate prior datasets 24

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

2. Create the test dataset in the existing project by using copying the training dataset from the
new project. For more information, see Copying content from an existing dataset.

3. Follow the instructions at Deleting an Amazon Rekognition Custom Labels project (Console) to
delete the new project.

Alternatively, you can create the test dataset by using the manifest file for prior dataset. For more
information, see Creating a manifest file.

Using a prior dataset as a test dataset 25

Rekognition Custom Labels Guide

Understanding Amazon Rekognition Custom Labels

This section gives you an overview of the workflow to train and use an Amazon Rekognition
Custom Labels model with the console and the AWS SDK.

® Note

Amazon Rekognition Custom Labels now manages datasets within a project. You can create
datasets for your projects with the console and with the AWS SDK. If you have previously
used Amazon Rekognition Custom Labels, your older datasets might need associating with
a new project. For more information, see Step 6: (Optional) Associate prior datasets with

new projects

Topics

» Decide your model type

Create a model

Improve your model

Start your model

Analyze an image

Stop your model

Decide your model type

You first decide which type of model you want to train, which depends on your business goals. For
example, you could train a model to find your logo in social media posts, identify your products on
store shelves, or classify machine parts in an assembly line.

Amazon Rekognition Custom Labels can train the following types of model:

» Find objects, scenes, and concepts

» Find object locations

o Find the location of brands

Decide your model type 26

Rekognition Custom Labels Guide

To help you decide which type of model to train, Amazon Rekognition Custom Labels provides
example projects that you can use. For more information, see Getting started with Amazon
Rekognition Custom Labels.

Find objects, scenes, and concepts

The model predicts classifications for the objects, scenes, and concepts associated with an entire
image. For example, you can train a model that determines if an image contains a tourist attraction,
or not. For an example project, see Image classification. The following image of a lake is an
example of the kind of image you can recognize objects, scenes, and concepts in.

P =

Alternatively, you can train a model that categorizes images into multiple categories. For example,
the previous image might have categories such as sky color, reflection, or lake. For an example
project, see Multi-label image classification.

Find objects, scenes, and concepts 27

Rekognition Custom Labels Guide

Find object locations

The model predicts the location of an object on an image. The prediction includes bounding box
information for the object location and a label that identifies the object within the bounding box.
For example, the following image shows bounding boxes around various parts of a circuit board,
such as a comparator or pot resistor.

Tl
1

1]

i
1

8
Z
2l -l
-
o

B

|

The Object localization example project shows how Amazon Rekognition Custom Labels uses
labeled bounding boxes to train a model that finds object locations.

Find the location of brands

Amazon Rekognition Custom Labels can train a model that finds the location of brands, such as
logos, on an image. The prediction includes bounding box information for the brand location
and a label that identifies the object within the bounding box. For an example project, see Brand
detection. The following image is an example of some of the brands that the model can detect.

Find object locations 28

Rekognition Custom Labels Guide

h

E&%

user activity AWS Lambda

Pinpoint

recommendations @
~
Fal

Create a model

The steps to create a model are creating a project, creating training and test datasets, and training
the model.

Create a project

An Amazon Rekognition Custom Labels project is a group of resources needed to create and
manage a model. A project manages the following:

« Datasets — The images and image labels used to train a model. A project has a training dataset
and a test dataset.

» Models - The software that you train to find the concepts, scenes, and objects unique to your
business. You can have multiple versions of a model in a project.

We recommend that you use a project for a single use case, such as finding circuit board parts on a
circuit board.

You can create a project with the Amazon Rekognition Custom Labels console and with the
CreateProject API. For more information, see Creating a project.

Create a model 29

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProject

Rekognition Custom Labels Guide

Create training and test datasets

A dataset is a set of images and labels that describe those images. Within your project, you create
a training dataset and a test dataset that Amazon Rekognition Custom Labels uses to train and test
your model.

A label identifies an object, scene, concept, or bounding box around an object in an image. Labels
are either assigned to an entire image (image-level) or they are assigned to a bounding box that
surrounds an object on an image.

/A Important

How you label the images in your datasets determines the type of model that Amazon
Rekognition Custom Labels creates. For example, to train a model that finds objects, scenes
and concepts, you assign image level labels to the images in your training and test datasets.
For more information, see Purposing datasets.

Images must be in PNG and JPEG format, and you should follow the input images
recommendations. For more information, see Preparing images.

Create training and test datasets (Console)

You can start a project with a single dataset, or with separate training and test datasets. If you
start with a single dataset, Amazon Rekognition Custom Labels splits your dataset during training
to create a training dataset (80%) and a test dataset (20%) for your project. Start with a single
dataset if you want Amazon Rekognition Custom Labels to decide which images are used for
training and testing. For complete control over training, testing, and performance tuning, we
recommend that you start your project with separate training and test datasets.

To create the datasets for a project, you import the images in one of the following ways:

» Import images from your local computer.

» Import images from an S3 bucket. Amazon Rekognition Custom Labels can label the images
using the folder names that contain the images.

« Import an Amazon SageMaker Al Ground Truth manifest file.

« Copy an existing Amazon Rekognition Custom Labels dataset.

Create training and test datasets 30

Rekognition Custom Labels Guide

For more information, see Creating training and test datasets with images.

Depending on where you import your images from, your images might be unlabeled. For example,
images imported from a local computer aren't labeled. Images imported from an Amazon
SageMaker Al Ground Truth manifest file are labeled. You can use the Amazon Rekognition Custom
Labels console to add, change, and assign labels. For more information, see Labeling images.

To create your training and test datasets with the console, see Creating training and test datasets
with images. For a tutorial that includes creating training and test datasets, see Classifying images.

Create training and test datasets (SDK)

To create your training and test datasets, you use the CreateDataset API. You can create a
dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon
Rekognition Custom Labels dataset. For more information, see Create training and test datasets

(SDK) If necessary, you can create your own manifest file. For more information, see the section
called “Creating a manifest file".

Train your model

Train your model with the training dataset. A new version of a model is created each time it is
trained. During training, Amazon Rekognition Custom Labels test the performance of your trained
model. You can use the results to evaluate and improve your model. Training takes a while to
complete. You are only charged for a successful model training. For more information, see Training
an Amazon Rekognition Custom Labels model. If model training fails, Amazon Rekognition Custom

Labels provides debugging information that you can use. For more information, see Debugging a
failed model training.

Train your model (Console)

To train your model with the console, see Training a model (Console).

Training a model (SDK)

You train an Amazon Rekognition Custom Labels model by calling CreateProjectVersion. For more

information, see Training a model (SDK).

Train your model 31

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion

Rekognition Custom Labels Guide

Improve your model

During testing, Amazon Rekognition Custom Labels creates evaluation metrics that you can use to
improve your trained model.

Evaluate your model

Evaluate the performance of your model by using the performance metrics created during testing.
Performance metrics, such as F1, precision, and recall, allow you to understand the performance
of your trained model, and decide if you're ready to use it in production. For more information, see
Metrics for evaluating your model.

Evaluate a model (console)

To view performance metrics, see Accessing evaluation metrics (Console).

Evaluate a model (SDK)

To get performance metrics, you call DescribeProjectVersions to get the testing results. For

more information, see Accessing Amazon Rekognition Custom Labels evaluation metrics (SDK).

The testing results include metrics not available in the console, such as a confusion matrix for
classification results. The testing results are returned in the following formats:

» F1 score - A single value representing the overall performance of precision and recall for the
model. For more information, see F1.

« Summary file location — The testing summary includes aggregated evaluation metrics for the
entire testing dataset and metrics for each individual label. DescribeProjectVersions
returns the S3 bucket and folder location of the summary file. For more information, see
Accessing the model summary file.

« Evaluation manifest snapshot location — The snapshot contains details about the test results,
including the confidence ratings and the results of binary classification tests, such as false
positives. DescribeProjectVersions returns the S3 bucket and folder location of the
snapshot files. For more information, see Interpreting the evaluation manifest snapshot.

Improve your model

If improvements are needed, you can add more training images or improve dataset labeling. For
more information, see Improving an Amazon Rekognition Custom Labels model. You can also give

Improve your model 32

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

feedback on the predictions your model makes and use it to make improvements to your model.
For more information, see Improving a model with Model feedback.

Improve your model (console)

To add images to a dataset, see Adding more images to a dataset. To add or change labels, see the
section called “Labeling images”.

To retrain your model, see Training a model (Console).

Improve your model (SDK)

To add images to a dataset or change the labeling for an image, use the UpdateDatasetEntries
APl. UpdateDatasetEntries updates or adds JSON lines to a manifest file. Each JSON line
contains information for a single image, such as assigned labels or bounding box information.

For more information, see Adding more images (SDK). To view the entries in a dataset, use the
ListDatasetEntries API

To retrain your model, see Training a model (SDK).

Start your model

Before you can use your model, you start the model by using the Amazon Rekognition Custom
Labels console or the StartProjectVersion API. You are charged for the amount of time that
your model runs. For more information, see Running a trained model.

Start your model (console)

To start your model using the console, see Starting an Amazon Rekognition Custom Labels model

(Console).

Start your model

You start your model calling StartProjectVersion. For more information, see Starting an Amazon
Rekognition Custom Labels model (SDK).

Start your model 33

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StartProjectVersion

Rekognition Custom Labels Guide

Analyze an image

To analyze an image with your model, you use the DetectCustomLabels API. You can specify a
local image, or an image stored in an S3 bucket. The operation also requires the Amazon Resource
Name (ARN) of the model that you want to use.

If your model finds objects, scenes, and concepts, the response includes a list of image-level labels
found in the image. For example, the following image shows the image-level labels found using
Rooms example project.

If the model finds object locations, the response includes list of labeled bounding boxes found
in the image. A bounding box represents the location of an object on an image. You can use the
bounding box information to draw a bounding box around an object. For example, the following
image shows bounding boxes around circuit board parts found using the Circuit boards example
project.

Analyze an image 34

Rekognition Custom Labels Guide

For more information, see Analyzing an image with a trained model.

Stop your model

You are charged for the time that your model is running. If you are no longer using your model,
stop the model by using the Amazon Rekognition Custom Labels console, or by using the
StopProjectVersion API. For more information, see Stopping an Amazon Rekognition Custom

Labels model.

Stop your model (Console)

To stop a running model with the console, see Stopping an Amazon Rekognition Custom Labels

model (Console).

Stop your model (SDK)

To stop a running model, call StopProjectVersion. For more information, see Stopping an Amazon

Rekognition Custom Labels model (SDK).

Stop your model 35

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StopProjectVersion

Rekognition Custom Labels Guide

Getting started with Amazon Rekognition Custom Labels

Before starting these Getting started instructions, we recommend that you read Understanding
Amazon Rekognition Custom Labels.

You use Amazon Rekognition Custom Labels to train a machine learning model. The trained model
analyzes images to find the objects, scenes, and concepts that are unique to your business needs.
For example, you can train a model to classify images of houses, or find the location of electronic
parts on a printed circuit board.

To help you get started, Amazon Rekognition Custom Labels includes tutorial videos and example
projects.

® Note

For information about the AWS Regions and endpoints that Amazon Rekognition Custom
Labels supports, see Rekognition endpoints and quotas.

Tutorial videos

The videos show you how to use Amazon Rekognition Custom Labels to train and use a model.
To view the tutorial videos

1. Sign in to the AWS Management Console and open the Amazon Rekognition console at
https://console.aws.amazon.com/rekognition/.

2. Inthe left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown. If you don't see Use Custom Labels, check that the AWS Region you are using
supports Amazon Rekognition Custom Labels.

3. In the navigation pane, choose Get started.

4. In What is Amazon Rekognition Custom Labels?, choose the video to watch the overview
video.

5. In the navigation pane, choose Tutorials.

6. On the Tutorials page, choose the tutorial videos that you want to watch.

Tutorial videos 36

https://docs.aws.amazon.com/general/latest/gr/rekognition.html
https://console.aws.amazon.com/rekognition/
https://docs.aws.amazon.com/general/latest/gr/rekognition_region.html

Rekognition Custom Labels Guide

Example projects

Amazon Rekognition Custom Labels provides the following example projects.

Image classification

The image classification project (Rooms) trains a model that finds one or more household locations
in an image, such as backyard, kitchen, and patio. The training and test images represent a

single location. Each image is labeled with a single image-level label, such as kitchen, patio, or
living_space. For an analyzed image, the trained model returns one or more matching labels

from the set of image-level labels used for training. For example, the model might find the label
living_space in the following image. For more information, see Find objects, scenes, and concepts.

Multi-label image classification

The multi-label image classification project (Flowers) trains a model that categorizes images of
flowers into three concepts (flower type, leaf presence, and growth stage).

The training and test images have image-level labels for each concept, such as camellia for a flower
type, with_leaves for a flower with leaves, and fully_grown for a flower that is fully grown.

For an analyzed image, the trained model returns matching labels from the set of image-level
labels used for training. For example, the model returns the labels mediterranean_spurge and
with_leaves for the following image. For more information, see Find objects, scenes, and concepts.

Example projects 37

Rekognition Custom Labels Guide

Brand detection

The brand detection project (Logos) trains a model that model finds the location of certain AWS
logos such as Amazon Textract, and AWS lambda. The training images are of the logo only and
have a single image level-label, such as lambda or textract. It is also possible to train a brand
detection model with training images that have bounding boxes for brand locations. The test
images have labeled bounding boxes that represent the location of logos in natural locations, such
as an architectural diagram. The trained model finds the logos and returns a labeled bounding box
for each logo found. For more information, see Find brand locations.

|l

Lamda

h

8&%

user activity AWS Lambda

Pinpoint

recommendations @
—~
ra

Object localization

The object localization project (Circuit boards) trains a model that finds the location of parts on
a printed circuit board, such as a comparator or an infra red light emitting diode. The training

and test images include bounding boxes that surround the circuit board parts and a label that
identifies the part within the bounding box. In the following example image, the label names are
ir_phototransistor, ir_led, pot_resistor, and comparator. The trained model finds the circuit board
parts and returns a labeled bounding for each circuit part found. For more information, see Find
object locations.

Brand detection 38

Rekognition Custom Labels Guide

Br:
Z
2
5
o

(
[E+

|

Using the example projects

These Getting Started instructions show you how to train a model by using example projects that
Amazon Rekognition Custom Labels creates for you. It also shows you how to start the model and
use it to analyze an image.

Creating the example project

To get started, decide which project to use. For more information, see Step 1: Choose an example
project.

Amazon Rekognition Custom Labels uses datasets to train and evaluate (test) a model. A dataset
manages images and the labels that identify the contents of images. The example projects include
a training dataset and a test dataset in which all images are labeled. You don't need to make any
changes before training your model. The example projects show the two ways in which Amazon
Rekognition Custom Labels uses labels to train different types of models.

» image-level — The label identifies an object, scene, or concept that represents the entire image.

» bounding box — The label identifies the contents of a bounding box. A bounding box is a set of
image coordinates that surround an object in an image.

Later, when you create a project with your own images, you must create training and test datasets,
and also label your images. For more information, see Decide your model type.

Using the example projects 39

Rekognition Custom Labels Guide

Training the model

After Amazon Rekognition Custom Labels creates the example project, you can train the model. For
more information, see Step 2: Train your model. After training finishes, you normally evaluate the

performance of the model. The images in the example dataset already create a high-performance
model, and you don't need to evaluate the model before running the model. For more information,
see Improving a trained Amazon Rekognition Custom Labels model.

Using the model

Next you start the model. For more information, see Step 3: Start your model.

After you start running your model, you can use it to analyze new images. For more information,
see Step 4: Analyze an image with your model.

You are charged for the amount of time that your model runs. When you finish using the example
model, you should stop the model. For more information, see Step 5: Stop your model.

Next steps

When you're ready, you can create your own projects. For more information, see Step 6: Next steps.

Step 1: Choose an example project

In this step you use choose an example project. Amazon Rekognition Custom Labels then creates
a project and a dataset for you. A project manages the files used to train your model. For more
information, see Managing an Amazon Rekognition Custom Labels project. Datasets contain the
images, assigned labels, and bounding boxes that you use to train and test a model. For more
information, see the section called “Managing datasets".

For information about the example projects, see Example projects.

Choose an example project

1. Sign in to the AWS Management Console and open the Amazon Rekognition console at
https://console.aws.amazon.com/rekognition/.

2. Inthe left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown. If you don't see Use Custom Labels, check that the AWS Region you are using
supports Amazon Rekognition Custom Labels.

Training the model 40

https://console.aws.amazon.com/rekognition/
https://docs.aws.amazon.com/general/latest/gr/rekognition_region.html

Rekognition Custom Labels Guide

3. Choose Get started.

Amazon Rekognition Custom Labels section showing Get started, Tutorials with "Example
projects" highlighted, Projects, and Datasets.

Amazon Rekognition X
Custom Labels

Get started

Tutorials

Example projects§

Projects

Datasets

4. In Explore example projects, choose Try example projects.

5. Decide which project you want to use and choose Create project "project name" within the
example section. Amazon Rekognition Custom Labels then creates the example project for

you.

(® Note

If this is the first time that you've opened the console in the current AWS Region, the
First Time Set Up dialog box is shown. Do the following:

1. Note the name of the Amazon S3 bucket that's shown.

2. Choose Continue to let Amazon Rekognition Custom Labels create an Amazon S3
bucket (console bucket) on your behalf. The image of the console below shows
examples with "Create project" buttons for Image Classification (Rooms), Multi-label
classification (Flowers), Brand detection (Logos), and Object Localization (Circuit
boards).

Step 1: Choose an example project 41

Rekognition

Custom Labels Guide

Image Classification
Recommended for content categorization

Multi-label classification

Recommended for imventory management

Classify images as belonging to a set of predefined labels. For
example, real estate companies can use Amazon Rekognition
Custom Labels to categorize their images of living rooms,
backyards, bedrooms, and other household locations.

R

Create project "Rooms"

Classify images into multiple categories, such as the color, size,
texture, and type of a flower. For example, plant growers can
use Amazon Rekognition Custom Labels to distinguish
between different types of flowers and if they are healthy,
damage i

Create project "Flowers"

Brand detection

Recommended for retail, media networks, and advertising

EEnE
B —r BN
umer acthity PN amrda

DTSN TS

Use brand detection to find the location of commercial brands

inimages. For example, to report on advertiser coverage,

media networks can use Amazon Rekognition Custom Labels

to report on the location of sponsor logos in photographs.

Create project "Logos" |

Object localization

Recommended for manufacturing and production chains

Use object localization to locate parts used in production or
manufacturing lines. For example, in the electronics industry,
Amazon Rekognition Custom Labels can help count the
number of capacitors on a circuit board.

Create project "Circuit boards"

panel looks like when the project is ready.

6. After your project is ready, choose Go to dataset. The following image shows what the project

Step 1: Choose an example project

42

Rekognition Custom Labels Guide

Your project is ready X

? o

) Project rooms_19 is ready
Choose Go to dataset and then train your model. Afterwards, evaluate your model and then
use it with new images to find objects, scenes, and concepts that match the example business

application. You are charged for the amount of time that it takes to successfully train your
miodel.

100%

Step 2: Train your model

In this step you train your model. The training and test datasets are automatically configured
for you. After training successfully completes, you can see the overall evaluation results, and
evaluation results for individual test images. For more information, see Training an Amazon

Rekognition Custom Labels model.

To train your model

1. On the dataset page, choose the Train model. The following image shows the console with the
train model button.

Step 2: Train your model 43

Rekognition Custom Labels Guide

rooms_19_training_dataset modified 2 minutes ago

You're now reviewing your dataset. Switch to labeling mode to add labels and

[start Labeli #& Train model
bounding boxes to images, or begin training a model. = sl q e

Filter by labels Images (61) info
Q
0 Images [61) 1 2 3 .. >
Labeled {61

2. On the Train model page, Choose Train model. The image belows shows the Train model
button, notice that the Amazon Resource Name (ARN) for your project is in the Choose project
edit box.

Step 2: Train your model 44

Rekognition Custom Labels Guide

rain model

Training details info

Choose project
Amazon Rekognition Custom Labels trains a new version of the model within the project you choose.

0 amawsirekogntionus-ess- I X

Tags Info
Atag is a label that you can assign to your model. Each tag consists of a key and an optional value.

No tags associated with the resource,

Add new tag

You can add up to 50 more tags.

Image Data Encryption

Your data is encrypted by default with a key that AWS owns and manages for you. To choose a different key, customize your
encryption settings. Learn More [

|| Customize encryption settings (advanced)

@ Train Model

3. Inthe Do you want to train your model? dialog box, shown in the following image, choose
Train model.

Step 2: Train your model 45

Rekognition Custom Labels Guide

Do you want to train your model? X

Typically, training takes from 30 minutes to 24 hours to complete. For more
information, see Training hours

You are charged for the amount of time it takes to successfully train your model and for
the amount of time your model runs. You arn't charged if model training fails.

Train model

Cancel

4. After training completes, choose the model name. Training is finished when the model status
is TRAINING_COMPLETED, as demonstrated in the following console screenshot.

rooms_19 . Delete project
Create datasets X
To train a model, you create a training dataset and a test dataset. A dataset is a collection of images labeled with the objects or scenes that you want to find. You create a dataset to train your model first. Later, you create another
dataset to test your model.
Modets ()
Q L

Name v Date created Training dataset v Testing dataset v Model performance Model status v Status message v

rooms_19.2021-07-13T10.36.30 July 13, 2021 rooms_19_training_dataset rooms_19_test_dataset 0.902 < TRAINING_COMPLETED > The model is ready to run.

5. Choose the Evaluate button to see the evaluation results. For information about evaluating a
model, see Improving a trained Amazon Rekognition Custom Labels model.

6. Choose View test results to see the results for individual test images. As seen in the following
screenshot, the evaluation dashboard shows metrics such as F1 score, precision, and recall for
each label along with number of test images. Overall metrics like average, precision, and recall
are also displayed.

Step 2: Train your model 46

Rekognition Custom Labels Guide

rooms 19 e Delete model

@ Model details Use Madel Tags

Evaluation results View test results

F1 score Info Average precision Info Owerall recall Infe
0.902 0.893 0.928

Date completed Training dataset Testing dataset

July 13, 2021 10 labels, 61 images 10 labels, 56 images

Trained in 1.223 hours

Per label performance (10)

Q 1
Label name & F1score Test images ¥ Precision ¢ Recall « Assumed threshold
backyard 0.857 4 1.000 0.750 0.286
bathroom 0.889 9 0.889 0.B89 0.185
bedroom 0.900 11 1.000 0.B18 0.262
claset 1.000 2 1.000 1.000 0.169
entry_way 1.000 3 1.000 1.000 0.145
floor_plan 1.000 2 1.000 1.000 0.685

7. After viewing the test results, choose the model name to return to the model page. The
following screenshot of the performance dashboard where you can click to the return to the
model page.

Step 2: Train your model 47

Rekognition Custom Labels Guide

Custom Labels Praojects rooms_19 rooms_19.2021-07-13T10.36.30 Performance

Evaluate image h 4
‘ @ Review the test results of your trained model for individual images. Below each image is information about the medel's predicted label compared with the label assigned to the image in

the test dataset, noted by result type. You can also filter by label and result types.

Filter by label Images (56) info

Q AR AT
Choose labels
Choose labels to filter images

Q
backyard2.jpeg backyard4.jpeg

True paositive
False positive

False negative

Labels Confidence Labels Confidence
front_y a'_d. 30.3% backy "j_ 4 46.3%
False positive True positive
backyard

ackyar l 21.6%

False negative

Step 3: Start your model

In this step you start your model. After your model starts, you can use it to analyze images.

You are charged for the amount of time that your model runs. Stop your model if you don't need
to analyze images. You can restart your model at a later time. For more information, see Running a
trained Amazon Rekognition Custom Labels model.

To start your model

1. Choose the Use model tab on the model page.

2. In the Start or stop model section do the following:

a. Choose Start.

b. Inthe Start model dialog box, choose Start. The following image shows the Start button
in the model control panel.

Step 3: Start your model 48

Rekognition Custom Labels Guide

rooms_19 e Delete model

Evaluate Model details Use Model Tags
Start or stop model

) Training Complete Select number of Inference units

Your model is trained. Choose Start model to start your Select a higher number of inference units to increase the throughput of
model and use it to detect custom labels your model. You are charged for each additional inference unit used.

1 inference unit v

3. Wait until the model is running. The following screenshot shows the console while the model
is running, where the status in the Start or stop model section is Running.

rooms_19 i

Evaluate Model details Use Model Tags

Start or stop model

Select number of Inference units

running. Choose Stop model to stop Select a higher number of inference units to increase the
custom label detection or change the number of '!:hroughput 1_:-f your madel. You are charged for each additional
: % inference unit used.
inference units that your model uses. Restart your
model when you need it. 1 inference unit

4. Use your model to classify images. For more information, see Step 4: Analyze an image with
your model.

Step 4: Analyze an image with your model

You analyze an image by calling the DetectCustomLabels API. In this step, you use the detect-
custom-labels AWS Command Line Interface (AWS CLI) command to analyze an example image.

You get the AWS CLI command from the Amazon Rekognition Custom Labels console. The console
configures the AWS CLI command to use your model. You only need to supply an image that's

Step 4: Analyze an image with your model 49

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels

Rekognition Custom Labels Guide

stored in an Amazon S3 bucket. This topic provides an image that you can use for each example
project.

® Note

The console also provides Python example code.

The output from detect-custom-labels includes a list of labels found in the image, bounding
boxes (if the model finds object locations), and the confidence that the model has in the accuracy
of the predictions.

For more information, see Analyzing an image with a trained model.

To analyze an image (console)

1. <textobject><phrase>Model status showing as Running, with Stop button to stop the running
model.</phrase></textobject>

If you haven't already, set up the AWS CLI. For instructions, see the section called “Step 4: Set
up the AWS CLI and AWS SDKs".

2. If you haven't already, start running your model. For more information, see Step 3: Start your
model.

3. Choose the Use Model tab and then choose API code. The model status panel shown below
shows the model as Running, with a Stop button to stop the running model, and an option to
display the API.

Step 4: Analyze an image with your model 50

Rekognition Custom Labels Guide

rooms_19 i

Evaluate Model details Usze Model Tags

Start or stop model

%) Running Select number of Inference units

Your model is running. Choose Stop model to stop Select a higher number of inference units to increase the
custom label detection or change the number of T:hrcughput i.:'f your madel. You are charged for each additional
| i inference unit used.

inference units that your model uses. Restart your

rmodel when you need it. 1 inference unit

Use your model

Amazon Resource Name (ARN)

> APl Code

4. Choose AWS CLI command.

5. In the Analyze image section, copy the AWS CLI command that calls detect-custom-
labels. The following image of the Rekognition console shows the "Analyze Image" section
with the AWS CLI command to detect custom labels on an image using a machine learning
model, and instructions to start the model and provide image details.

Step 4: Analyze an image with your model 51

Rekognition Custom Labels Guide

Use your model

Amazon Resource Name (ARMN)

v API Code
Use your model rooms_ by calling the following AWS CLI commands or
Pytha i g can start and stop the model, and analyze custom labels in new images.

O AWS U command

Start model
Command used to start the rooms model.

ows rekognition start-project-version
--project-version-arn "arn:ows:rekognition:us-east-1:
--min-inference-units 1 %
--region us-east-1

Analyze image
pinand LT o analyze an image with the rooms nodel. Replace MY_BUCKET and

PATH_TO_MY_IMAGE with your 53 bucket name and image path.

aws rekognition detect-custom-labels *
--project-versicn-arn "arn:aws:rekognition:us-east-1:
--image '{"S30bject": {"Bucket": "MY_BUCKET","Name": "PATH_TO_MY_IMAC
--region us-east-1

6. Upload an example image to an Amazon S3 bucket. For instructions, see Getting an example

Image.

7. At the command prompt, enter the AWS CLI command that you copied in the previous step. It
should look like the following example.

The value of --project-version-arn should be Amazon Resource Name (ARN) of your
model. The value of --region should be the AWS Region in which you created the model.

Change MY_BUCKET and PATH_TO_MY_IMAGE to the Amazon S3 bucket and image that you
used in the previous step.

If you are using the custom-labels-access profile to get credentials, add the --profile
custom-labels-access parameter.

Step 4: Analyze an image with your model 52

Rekognition Custom Labels Guide

aws rekognition detect-custom-labels \
--project-version-arn "model_arn" \
--image '{"S30bject": {"Bucket": "MY_BUCKET","Name": "PATH_TO_MY_IMAGE"}}' \
--region us-east-1 \
--profile custom-labels-access

If the model finds objects, scenes, and concepts, the JSON output from the AWS CLI command
should look similar to the following. Name is the name of the image-level label that the model
found. Confidence (0-100) is the model's confidence in the accuracy of the prediction.

{
"CustomLabels": [
{
"Name": "living_space",
"Confidence": 83.41299819946289
}
]
}

If the model finds object locations or finds brand, labeled bounding boxes are returned.
BoundingBox contains the location of a box that surrounds the object. Name is the object
that the model found in the bounding box. Confidence is the model's confidence that the
bounding box contains the object.

{
"CustomLabels": [
{
"Name": "textract",
"Confidence": 87.7729721069336,
"Geometry": {
"BoundingBox": {
"Width": ©.198987677693367,
"Height": 0.31296101212501526,
"Left": ©0.07924537360668182,
"Top": 0.4037395715713501
}
}
}
]
}

Step 4: Analyze an image with your model 53

Rekognition Custom Labels Guide

8. Continue to use the model to analyze other images. Stop the model if you are no longer using
it. For more information, see Step 5: Stop your model.

Getting an example image

You can use the following images with the DetectCustomLabels operation. There is one image
for each project. To use the images, you upload them to an S3 bucket.

To use an example image

1. Right-click the following image that matches the example project that you are using. Then
choose Save image to save the image to your computer. The menu option might be different,
depending on which browser you are using.

2. Upload the image to an Amazon S3 bucket that's owned by your AWS account and is in the
same AWS region in which you are using Amazon Rekognition Custom Labels.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service
User Guide.

Image classification

Getting an example image 54

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UploadingObjectsintoAmazonS3.html

Rekognition

Custom Labels Guide

Multi-label classification

Brand detection

AWS Cloud

Fay

user activity

W

user activity data

N

/6\'
\4/
recommendations

Amazon Personalize

i\

AWS Lambda

recommendations @
Y
i

Amazon Pinpoint

Getting an example image

55

Rekognition Custom Labels Guide

Object localization

Step 5: Stop your model

In this step you stop running your model. You are charged for the amount of time your model is
running. If you have finished using the model, you should stop it.

To stop your model

1. In the Start or stop model section choose Stop.

Step 5: Stop your model 56

Rekognition Custom Labels Guide

rooms_19 i

Evaluate Model details Use Model Tags

Start or stop model
{*) Running Select number of Inference units

Your model is running. Choose Stop model to stop Select a higher number of inference units to increase the
custom label detection or change the number of throughput of your mael, Von an: charged for each

3 2 additional inference unit used.

inference units that your model uses. Restart your

model when you need it. 1 inference unit

2. In the Stop model dialog box, enter stop to confirm that you want to stop the model.
Stop model *

You are about to stop the following model:
rooms_19/version/rooms_19.2021-07-13T10.36.30/1626197790945

After the model stops, it can't detect custom labels. Resources using the model are
disrupted. Are you sure you want to stop this model?

To confirm that you want to stop this model, enter stop below.

|
| =)

3. Choose Stop to stop your model. The model has stopped when the status in the Start or stop
model section is Stopped. In the following screenshot, the User interface section has the
option to start or stop a machine learning model. The model's status shows as "Stopped" with
a "Start" button to start the model and a dropdown to select the number of inference units.

Step 5: Stop your model 57

Rekognition Custom Labels Guide

rooms_19 e Delete model

Evaluate Model details Use Model Tags

Start or stop model m
Select number of Inference units
e it n't running. To start running your model, Select a higher number of inference units to increase the throughput of

choose Start model or use the example code in Use your your model. You are charged for each additional inference unit used.
model. You can then use your model to find custom labels in
images,

1 inference unit v

Step 6: Next steps

After you finished trying the examples projects, you can use your own images and datasets to
create your own model. For more information, see Understanding Amazon Rekognition Custom
Labels.

Use the labeling information in the following table to train models similar to the example projects.

Example Training images Test images
Image classification (Rooms) 1 Image-level label perimage 1 Image-level label per image
Multi-label classification Multiple image-level labels Multiple image-level labels
(Flowers) per image per image
Brand detection (Logos) image level-labels (you can Labeled bounding boxes

also use Labeled bounding

boxes)
Image localization (Circuit Labeled bounding boxes Labeled bounding boxes
boards)

The Classifying images shows you how to create a project, datasets, and models for an Image
classification model.

Step 6: Next steps 58

Rekognition Custom Labels Guide

For detailed information about creating datasets and training models, see Creating an Amazon

Rekognition Custom Labels model.

Step 6: Next steps 59

Rekognition Custom Labels Guide

Classifying images

This tutorial shows you how to create the project and datasets for a model that classifies objects,
scenes, and concepts found in an image. The model classifies the entire image. For example, by
following this tutorial, you can train a model to recognize household locations such as a living
room or kitchen. The tutorial also shows you how to use the model to analyze images.

Before starting the tutorial, we recommend that you read Understanding Amazon Rekognition

Custom Labels.

In this tutorial, you create the training and test datasets by uploading images from your local
computer. Later you assign image-level labels to the images in your training and test datasets.

The model you create classifies images as belonging to the set of image-level labels that you assign
to the training dataset images. For example, if the set of image-level labels in your training dataset
is kitchen, 1iving_room, patio, and backyaxrd, the model can potentially find all of those
image-level labels in a single image.

(@ Note

You can create models for different purposes such as finding the location of objects on an
image. For more information, see Decide your model type.

Step 1: Collect your images

You need two sets of images. One set to add to your training dataset. Another set to add to your
test dataset. The images should represent the objects, scenes, and concepts that you want your
model to classify. The images must be in PNG or JPEG format. For more information, see Preparing

Images.

You should have at least 10 images for your training dataset and 10 images for your test dataset.

If you don't yet have images, use the images from the Rooms example classification project. After
creating the project, the training and test images are at the following Amazon S3 bucket locations:

« Training images — s3://custom-labels-console-region-numbers/assets/
rooms_version number_test_dataset/

Step 1: Collect your images 60

Rekognition Custom Labels Guide

e Testimages — s3://custom-labels-console-region-numbers/assets/
rooms_version number_test_dataset/

region is the AWS Region in which you are using the Amazon Rekognition Custom Labels console.
numbers is a value that the console assigns to the bucket name. Version number is the version
number for the example project, starting at 1.

The following procedure stores images from the Rooms project into local folders on your computer
named training and test.

To download the Rooms example project image files

1. Create the Rooms project. For more information, see Step 1: Choose an example project.

2. Open the command prompt and enter the following command to download the training
images.

aws s3 cp s3://custom-labels-console-region-numbers/assets/rooms_version
number_training_dataset/ training --recursive

3. At the commend prompt, enter the following command to download the test images.

aws s3 cp s3://custom-labels-console-region-numbers/assets/rooms_version
number_test_dataset/ test --recursive

4. Move two of the images from the training folder to a separate folder of your choosing. You'll
use the images to try your trained model in Step 9: Analyze an image with your model.

Step 2: Decide your classes

Make a list of the classes that you want your model to find. For example, if you're training a model
to recognize rooms in a house, you can classify the following image as 1iving_room.

Step 2: Decide your classes 61

Rekognition Custom Labels Guide

Each class maps to an image-level label. Later you assign image-level labels to the images in your
training and test datasets.

If you're using the images from the Rooms example project, the image-level labels are backyard,

bathroom, bedroom, closet, entry_way, floor_plan, front_yard, kitchen, living_space, and patio.

Step 3: Create a project

To manage your datasets and models you create a project. Each project should address a single use
case, such as recognizing rooms in a house.

To create a project (console)

1. If you haven't already, set up the Amazon Rekognition Custom Labels console. For more
information, see Setting up Amazon Rekognition Custom Labels.

2. Signin to the AWS Management Console and open the Amazon Rekognition console at
https://console.aws.amazon.com/rekognition/.

3. Inthe left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown.

The Amazon Rekognition Custom Labels landing page, choose Get started
In the left navigation pane, choose Projects.
On the projects page, choose Create Project.

In Project name, enter a name for your project.

© N o U A

Choose Create project to create your project.

Step 3: Create a project 62

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

Custom Labels Create project

Create project i

Project details

Project name

My-Project

JtMie can't be more than 63 characters. It can only contain alphanumeric characters, with no spaces or special

characters.

Cancel " Create project

Step 4: Create training and test datasets

In this step you create a training dataset and a test dataset by uploading images from your local
computer. You can upload as many as 30 images at a time. If you have a lot of images to upload,
consider creating the datasets by importing the images from an Amazon S3 bucket. For more
information, see Importing images from an Amazon S3 bucket.

For more information about datasets, see Managing datasets.

To create a dataset using images on a local computer (console)

1. On the project details page, choose Create dataset.

Step 4: Create training and test datasets 63

Rekognition

Custom Labels Guide

v How it works

Creating your dataset

1. Create dataset

A dataset is a collection of images,
and image labels, that you use to
train or test a model.

)

2. Label images

Labels identify objects, scenes, or
concepts on an entire image, or they
identify abject lecations on an
image.

Training your mode

&

3. Train model

Depending on the training
dataset, the training model finds

image-level scenes and concepts,

or it finds object locations.

Evaluating your model

1

4. Check performance metrics

Performance metrics tell you if
your model needs additional
training before you can usa it.

i A W

Project details

Choose Create datasets.

In the Training dataset details section, choose Upload images from your computer.

In the Test dataset details section, choose Upload images from your computer.

In the Starting configuration section, choose Start with a training dataset and a test dataset.

Step 4: Create training and test datasets

64

Rekognition Custom Labels Guide

Create dataset ..

Starting cenfiguration

Configuration opticns

Start 'with 3 single dazaser
Whaen yow Iréin yoor model, the Seawl o splil 2o b
the trisieg dabmes (B9 snd et datavaet {20%) for

D Start with a maining dataser and 3 test dataset
Ascommandad {or mavl users. Stk with = highest
comtrel cear training, besting, and parformen cs temng

FouT e

What are and test

» & fraining dataset teaches your model to identihy scenes or objects in Images.
« A& test dataset ewaluartes the performance of your trained model.

Training dataset details

Import mages info
Imtpart | msges from one of the Joeron below

import Images from 53 bucker

Uhas g from an eateking 44 becket
by meburinig tha §5 backet LAL ¥ou
can axtarrateally sdd labes based o
yaur S5 Budort f=lder namen

T'::r
-

@ Upload images fram your
[ompaner
Fedie] bmimgan by uploafing files fram
peur loosl computer. You're Limbed b
upkaadkng 40 irreqes a2 are Hme

Copy an exlsting Amazon
Felognition Custem Labels
dataset

Lhw an exismp dirfasel 2y 2 Warking
point far pour mew Sakaed Your
ariginsl datawd wil rmsin
urchanged

ey a2l h,l'
Sagefaker Ground Truth
Prowid the Locatkan of yoer man Hest
file If you have s lebeled datmstiin e
chifferest formas, corrert tham o @
i Bt Farmat.

ESERES

Test dataset details

Impart mages Info

brpart | g from orie of the o belom

Emport Images from 53 bucket

Lhan irrvagens from an axtiting 53 becket.
by metaring the 55 backst UL ¥ou
can astorrasically add labol bassd o
waur 4§ Budont $zlder names

Upload images from your
companer

i bmagas by uploasieg Ales fram
yeur Lol computar. You're limhed
upkadiing 50 irnages 8% o Hrme.

‘Copy an existing Amazon
Rewognition Custem Labels
dataset

Lhn an wetsing dirtasat @y & 2facting

point bor your cew Ssbaet Yoer
original Sataw wil sermsiin

unchanged
.'."h

G Deled t‘_ll
Sagefdaker Grounc Truth
Prouido tha iocatmn of your rran desd
A If you have o Lsbaled datesbiina
cifferat forma, cormart tham o
rran et formi.

Canoed ‘ Create D atasets l

6. A dataset page appears with a Training tab and a Test tab for the respective datasets.

Step 4: Create training and test datasets

65

Rekognition Custom Labels Guide

7. On the dataset page, choose the Training tab.
8. Choose Actions and then choose Add images to training dataset.

Custom Labels Projects My Project Dataset

Dataset i tart labeling (Actions

Add images

Training (0) Test (0) Add images to training dataset
Add images to test dataset

v Preparing your dataset

% % = rl._\l'}_GH/ g E : De[)leelt:ted:::::g dataset

1. Review dataset 2. Add labels

3. Label images Delete test dataset
Verify that your images are labeled You add labels for each type of ATTEr your aatasets are ready,

Choose the images that you want to
correctly. If the dataset needs more object, scene, or concept in your

X Choose Train model to train your
. i label. If you need to label an entire
images, choose Actions and then dataset. To add or modify labels, " : model. Then, evaluate and use the
; image, choose Assign labels and
the appropriate dataset under Add choose Start labeling and then = model to find objects, scenes, and
assign image-level labels. If you

Images. Learn more choose Edit labels. Learn more) ! concepts in new images. Learn more
need to label object locations,

Choose Draw bounding boxes. Then
draw bounding boxes around

9. Inthe Add images to training dataset dialog box, choose Choose files.

Add images to training dataset X

Add images by dragging and dropping them below. You are limited to

@ Upload images from your computer
uploading 30 images at one time.

[t] Choose files

Supported image formats: IPG, PNG. Minimum Ssize (px): 64 x 64. Maximum size (px): 4096 x
4096. Images must have the same dimensions.

Cancel

10. Choose the images you want to upload to the dataset. You can upload as many as 30 images
at a time.

Step 4: Create training and test datasets 66

Rekognition Custom Labels Guide

11. Choose Upload images. It might take a few seconds for Amazon Rekognition Custom Labels to
add the images to the dataset.

Add images to training dataset x

@ Upload images from your computer
Add images by dragging and dropping them below. You are limited to

uploading 30 images at one time.

Drag and drop or upload files to add images to yvour dataset.

E [cChoose files '

Supported image formats: JPG, PNG. Minimum size (pu): 54 x 64. Maximuom size {px): 4096
® 4096. Images must have the same dimensions.

Uploaded 11 imageis)

o bathroom13. jpeg e
@ NE 0.04 MB
Last modified: 97272027, 4:29:59 PM
T bathroom15.jpeg =
= 0.02 M

|
| Last modified: /272021, 4:29:59 PM

3 i bathroom2.jpeg e
L 004 MB
Last modified: 97272021, 4:29:58 PM

bathroom19. jpeg b4
0.04 MB
Last modified: 9/27/2021, 4:29:59 PM

. bathroom11.jpeg »
= Q.07 MB
Last modified: 9/27/2021, 4:29:55 PM

backyard1.jpeg e
0.08 MB
Last modified: 92720217, 4:29:59 PM
L "' bathroom? jpeg =
@ =g 003 MB
Last modified: 9/27/2021, 4:29:59 M

12. If you have more images to add to the training dataset, repeat steps 9-12.

Step 4: Create training and test datasets 67

Rekognition Custom Labels Guide

13. Choose the Test tab.

14. Repeat steps 8 - 12 to add images to the test dataset. For step 8, choose Actions and then
choose Add images to test dataset.

Step 5: Add labels to the project

In this step you add a label to the project for each of the classes you identified in step Step 2:
Decide your classes.

To add a new label (console)

1. On the dataset gallery page, choose Start labeling to enter labeling mode.

Datasets i

Training (21) Test (18)

v Preparing your dataset

1. Review dataset 2. Add labels 3. Label images 4. Train model

Verify that your images are labeled correctly. You add labels for each type of object, scene, Choose the images that you want to label. If After your datasets are ready, Choose Train
If the dataset needs more images, choose of concept in your dataset. To add or modify ~ you need to label an entire image, choose maodel to train your model. Then, evaluate
Actions and then the appropriate dataset labels, choose Start labeling and then choose Assign labels and assign image-level labels. If and use the model to find objects, scenes,
under Add Images. Learn more Edit labels. Learn more you need to label object locations, Choose and concepts in new images. Learn more

Draw bounding boxes. Then draw beunding
boxes around objects and assign labels.
Choose Save changes to finish. Learn more

2. Inthe Labels section of the dataset gallery, choose Edit labels to open the Manage labels
dialog box.

In the edit box, enter a new label name.
Choose Add label.

Repeat steps 3 and 4 until you have created all the labels you need.

o v M W

Choose Save to save the labels that you added.

Step 6: Assign image-level labels to training and test datasets

In this step you assign a single image level to each image in your training and test datasets. The
image-level label is the class that each image represents.

Step 5: Add labels to the project 68

Rekognition Custom Labels Guide

To assign image-level labels to an image (console)

1. On the Datasets page, choose the Training tab.

2. Choose Start labeling to enter labeling mode.

3. Select one or more images that you want to add labels to. You can only select images on a
single page at a time. To select a contiguous range of images on a page:
a. Select the first image.
b. Press and hold the shift key.

c. Select the second image. The images between the first and second image are also
selected.

d. Release the shift key.

4. Choose Assign image-level labels.

Images (3/61) ‘ Assign image-level labels D Draw bounding boxes ‘

Q 1 2 3 .0

backyard1.jpeg () | backyard3.jpeg () | backyard5.jpeg ()

5. In Assign image-level labels to selected images dialog box, select a label that you want to
assign to the image or images.

6. Choose Assign to assign label to the image.

Step 6: Assign image-level labels to training and test datasets 69

Rekognition Custom Labels Guide

Assign image-level labels to selected images X

Labels are the objects, scenes, or concepts that your model is trained to identify in your
images.

Select label

Q. backyard|) X
"‘--_____-"

Cancel

7. Repeat labeling until every image is annotated with the required labels.
8. Choose the Test tab.

9. Repeat steps to assign image level labels to the test dataset images.

Step 7: Train your model

Use the following steps to train your model. For more information, see Training an Amazon
Rekognition Custom Labels model.

To train your model (console)

1. On the Dataset page, choose Train model.

Custom Labels Projects My Project-1 Dataset
Dataset Infa Start labeling H Actions ¥ @
Training (61) Test (56)

v Preparing your dataset

Step 7: Train your model 70

Rekognition Custom Labels Guide

2. On the Train model page, choose Train model. The Amazon Resource Name (ARN) for your
project is in the Choose project edit box.

rain model

Training details info

Choose project
Amazon Rekognition Custom Labels trains a new version of the model within the project you choose.

0 amawsirekogntionus-ess- I X

Tags Info
Atag is a label that you can assign to your model. Each tag consists of a key and an optional value.

No tags associated with the resource.

You can add up to 50 more tags.

Image Data Encryption

Your data is encrypted by default with a key that AWS owns and manages for you. To choose a different key, customize your
encryption settings. Learn More [

|| Customize encryption settings (advanced)

@ Train Model

3. Inthe Do you want to train your model? dialog box, choose Train model.

Step 7: Train your model 71

Rekognition

Custom Labels Guide

Do you want to train your model? X

Typically, training takes from 30 minutes to 24 hours to complete. For more
information, see Training hours

You are charged for the amount of time it takes to successfully train your model and for
the amount of time your model runs. You arn't charged if model training fails.

Cancel

4. Inthe Models section of the project page, you can see that training is in progress. You can
check the current status by viewing the Model Status column for the model version.
Training a model takes a while to complete.

Step 7: Train your model

72

Rekognition Custom Labels Guide

Custom Labels Projects My-Project-1

My-Project-1 s

v How it works

Creating your dataset Training your model Evaluating your model
b7 & =
1. Create dataset 2. Label images 3. Train model 4. Check performance metrics
A dataset is a collection of images, and Labels identify objects, scenes, or concepts Depending on the training dataset, the Performance metrics tell you if your
image labels, that you use to train or testa on an entire image, or they identify object training model finds image-level scenes model needs additional training before
model. locations on an image. and concepts, or it finds object you can use it.
locations.

Project details

Project name Created Dataset Models
My-Project-1 October 04, 2021 at 13:05:06 ¥} 1
(UTC-07:00)
Models (1)
Q U e 2
— o Date Training Test Model performance T = Status
created v dataset v dataset v (F1 score) v message v

The model is
being trained.

My-Project- October 04,

1.2021-10-04T13.52.53 2021 N/A TRAINING_IN_PROGRESS

5. After training completes, choose the model name. Training is finished when the model status
is TRAINING_COMPLETED.

rooms_19 e

Create datasets X
To train a model, you create a training dataset and a test dataset. A dataset is a collection of images labeled with the objects or scenes that you want to find. You create a dataset to train your model first. Later, you create another
dataset to test your model.

Mades 1)

Q =

~

Name v Date created Training dataset v Testing dataset v Model performance @ Model status v Status message v

rooms_19.2021-07-13T10.36.30 July 13, 2021 rooms_19_training_dataset rooms_19_test_dataset 0.502 ‘ TRAINING_COMPLETED > The model is ready to run.

6. Choose the Evaluate button to see the evaluation results. For information about evaluating a
model, see Improving a trained Amazon Rekognition Custom Labels model.

7. Choose View test results to see the results for individual test images. For more information,
see Metrics for evaluating your model.

Step 7: Train your model 73

Rekognition

Custom Labels Guide

rooms_19 e

@ Model details

Evaluation results
F1 score Info

0.902

Date completed

July 13, 2021
Trained in 1.223 hours

Per label performance (10)

Q
Label name & F1score
backyard 0.857
bathroom 0.88%
bedraom 0.900
cdloset 1.000
entry_way 1.000
floor_plan 1.000

Use Model Tags

Average precision Info
0.893

Training dataset
10 labels, 61 images

Test images ¥ Precision ¢
4 1.000
9 0.889
11 1.000
2 1.000
3 1.000
2 1.000

Delete model

Owerall recall Infe
0.928

Testing dataset
10 labels, 56 images

Recall « Assumed threshold

0.750 0.286
0.889 0.185
0.B18 0.262
1.000 0.169
1.000 0.149
1.000 0.685

8. After viewing the test results, choose the model name to return to the model page.

Step 7: Train your model

74

Rekognition Custom Labels Guide

Custom Labels Praojects rooms_19 rooms_19.2021-07-13T10.36.30 Performance

Evaluate image h 4
‘ ® Review the test results of your trained model for individual images. Below each image is information about the medel's predicted label compared with the label assigned to the image in

the test dataset, noted by result type. You can also filter by label and result types.

Filter by label Images (56) info

Q AR AT
Choose labels
Choose labels to filter images

Q
backyard2.jpeg backyard4.jpeg

True paositive
False positive

False negative

gy Wy VT W

Labels Confidence Labels Confidence
front_y a'_d. 30.3% backy "j_ 4 46.3%
False positive True positive
backyard

ackyar l 21.6%

False negative

Step 8: Start your model

In this step you start your model. After your model starts, you can use it to analyze images.

You are charged for the amount of time that your model runs. Stop your model if you don't need
to analyze images. You can restart your model at a later time. For more information, see Running a
trained Amazon Rekognition Custom Labels model.

To start your model

1. Choose the Use model tab on the model page.

2. In the Start or stop model section do the following:

a. Choose Start.

Step 8: Start your model 75

Rekognition Custom Labels Guide

rﬂﬂm5_1 9 Info Delete model

Evaluate Model details Tags

Start or stop model

() Training Complete Select number of Inference units
Your model is trained. Choose Start model to start your Select a higher number of inference units to increase the throughput of
model and use it to detect custom labels. your model. You are charged for each additional inference unit used.
1 inference unit v
b. In the Start model dialog box, choose Start.
Start Model x

You are about to start the following model:
iaproj1/version/c2/ 1633660268776

After the model starts, it can detect custom labels. You incur running costs until you
stop the model.

Are you sure you want to start this model?

3. Wait until the model is running. The model is running when the status in the Start or stop
model section is Running.

Step 8: Start your model 76

Rekognition Custom Labels Guide

rooms_19 i

Evaluate Model details Use Model Tags

Start or stop model

Select number of Inference units
5 running. Choose Stop medel to stop Select a higher number of inference units to increase the

custom label detection or change the number of throughput of your model. You are charged for each additional

: % inference unit used.
inference units that your model uses. Restart your
model when you need it 1 inference unit

Step 9: Analyze an image with your model

You analyze an image by calling the DetectCustomLabels API. In this step, you use the detect-

custom-labels AWS Command Line Interface (AWS CLI) command to analyze an example image.
You get the AWS CLI command from the Amazon Rekognition Custom Labels console. The console
configures the AWS CLI command to use your model. You only need to supply an image that's
stored in an Amazon S3 bucket.

(® Note

The console also provides Python example code.

The output from detect-custom-1labels includes a list of labels found in the image, bounding
boxes (if the model finds object locations), and the confidence that the model has in the accuracy
of the predictions.

For more information, see Analyzing an image with a trained model.

To analyze an image (console)

1. If you haven't already, set up the AWS CLI. For instructions, see the section called “Step 4: Set
up the AWS CLI and AWS SDKs".

2. Choose the Use Model tab and then choose API code.

Step 9: Analyze an image with your model 77

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels

Rekognition Custom Labels Guide

rooms_19 i

Evaluate Model details @ Tags

Start or stop model

=) Running Select number of Inference units

Your model is running. Choose Stop model to stop Select a higher number of inference units to increase the
custom label detection or change the number of 1.:hnnughput 1.:-f your madel. You are charged for each additional
| i inference unit used.

inference units that your model uses. Restart your

model when you need it. 1 inference unit

Use your model

Amazon Resource Name (ARN)

» APl Code

3. Choose AWS CLI command.

4. In the Analyze image section, copy the AWS CLI command that calls detect-custom-
labels.

Step 9: Analyze an image with your model 78

Rekognition Custom Labels Guide

Use your model

Amazon Resource Name (ARMN)

v API Code
Use your model rooms_ by calling the following AWS CLI commands or
Pytha i g can start and stop the model, and analyze custom labels in new images.

O AWS U command

Start model
Command used to start the rooms model.

ows rekognition start-project-version
--project-version-arn "arn:ows:rekognition:us-east-1:
--min-inference-units 1 %
--region us-east-1

Analyze image
pinand LT o analyze an image with the rooms nodel. Replace MY_BUCKET and

PATH_TO_MY_IMAGE with your 53 bucket name and image path.

aws rekognition detect-custom-labels *
--project-versicn-arn "arn:aws:rekognition:us-east-1:
--image '{"S30bject": {"Bucket": "MY_BUCKET","Name": "PATH_TO_MY_IMAC
--region us-east-1

5. Upload an image to an Amazon S3 bucket. For instructions, see Uploading Objects into
Amazon S3 in the Amazon Simple Storage Service User Guide. If you're using images from the
Rooms project, use one of the images you moved to a separate folder in Step 1: Collect your

Images.

6. At the command prompt, enter the AWS CLI command that you copied in the previous step. It
should look like the following example.

The value of --project-version-arn should be Amazon Resource Name (ARN) of your
model. The value of --region should be the AWS Region in which you created the model.

Change MY_BUCKET and PATH_TO_MY_IMAGE to the Amazon S3 bucket and image that you
used in the previous step.

Step 9: Analyze an image with your model 79

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UploadingObjectsintoAmazonS3.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UploadingObjectsintoAmazonS3.html

Rekognition Custom Labels Guide

If you are using the custom-labels-access profile to get credentials, add the --profile
custom-labels-access parameter.

aws rekognition detect-custom-labels \
--project-version-arn "model_arn" \
--image '{"S30bject": {"Bucket": "MY_BUCKET","Name": "PATH_TO_MY_IMAGE"}}' \
--region us-east-1 \
--profile custom-labels-access

The JSON output from the AWS CLI command should look similar to the following. Name is
the name of the image-level label that the model found. Confidence (0-100) is the model's
confidence in the accuracy of the prediction.

{
"CustomLabels": [
{
"Name": "living_space",
"Confidence": 83.41299819946289
}
]
}

7. Continue to use the model to analyze other images. Stop the model if you are no longer using
it.

Step 10: Stop your model

In this step you stop running your model. You are charged for the amount of time your model is
running. If you have finished using the model, you should stop it.

To stop your model

1. In the Start or stop model section choose Stop.

Step 10: Stop your model 80

Rekognition Custom Labels Guide

rooms_19 i

Evaluate Model details Use Model Tags

Start or stop model

=) Running Select number of Inference units

Your model is running. Choose Stop model to stop Select a higher number of inference units to increase the
custom label detection or change the number of throughput of your mael, Von an: charged for each

3 2 additional inference unit used.

inference units that your model uses. Restart your

model when you need it. 1 inference unit

2. In the Stop model dialog box, enter stop to confirm that you want to stop the model.
Stop model *

You are about to stop the following model:
rooms_19/version/rooms_19.2021-07-13T10.36.30/1626197790945

After the model stops, it can't detect custom labels. Resources using the model are
disrupted. Are you sure you want to stop this model?

To confirm that you want to stop this model, enter stop below.

=)

3. Choose Stop to stop your model. The model has stopped when the status in the Start or stop
model section is Stopped.

Step 10: Stop your model 81

Rekognition Custom Labels Guide

I‘GDH‘IS_'I g Infa Delete model

Evaluate Model details Use Model Tags

Start or stop model m

Select number of Inference units

e - n't running. To start running your model, Select a higher number of inference units to increase the throughput of
choose Start model or use the example code in Use your your model. You are charged for each additional inference unit used.
model. You can then use your model to find custom labels in I B =

images,

Step 10: Stop your model 82

Rekognition Custom Labels Guide

Creating an Amazon Rekognition Custom Labels model

A model is the software that you train to find the concepts, scenes, and objects that are unique to
your business. You can create a model with the Amazon Rekognition Custom Labels console or with
the AWS SDK. Before creating an Amazon Rekognition Custom Labels model, we recommend that
you read Understanding Amazon Rekognition Custom Labels.

This section provides console and SDK information about creating a project, creating training and
test datasets for different model types, and training a model. Later sections show you how to
improve and use your model. For a tutorial that shows you how to create and use a specific type of
model with the console, see Classifying images.

Topics

Creating a project

Creating training and test datasets

Training an Amazon Rekognition Custom Labels model

Debugging a failed model training

Creating a project

A project manages the model versions, training dataset, and test dataset for a model. You can
create a project with the Amazon Rekognition Custom Labels console or with the API. For other
project tasks, such deleting a project, see Managing an Amazon Rekognition Custom Labels project.

You can use tags to categorize and manage your Amazon Rekognition Custom Labels resources,
including your projects.

The CreateProject operation allows you to optionally specify tags when creating a new project,

providing the Tags as key-value pairs that you can use to categorize and manage your resources.

Creating an Amazon Rekognition Custom Labels Project (Console)

You can use the Amazon Rekognition Custom Labels console to create a project. The first time

you use the console in a new AWS Region, Amazon Rekognition Custom Labels asks to create an
Amazon S3 bucket (console bucket) in your AWS account. The bucket is used to store project files.
You can't use the Amazon Rekognition Custom Labels console unless the console bucket is created.

Creating a project 83

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProject

Rekognition Custom Labels Guide

You can use the Amazon Rekognition Custom Labels console to create a project.

To create a project (console)

1.

© N o U k& W

Sign in to the AWS Management Console and open the Amazon Rekognition console at
https://console.aws.amazon.com/rekognition/.

In the left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown.

The Amazon Rekognition Custom Labels landing page, choose Get started.
In the left pane, Choose Projects.

Choose Create Project.

In Project name, enter a name for your project.

Choose Create project to create your project.

Follow the steps in Creating training and test datasets to create the training and test datasets

for your project.

Creating an Amazon Rekognition Custom Labels project (SDK)

You create an Amazon Rekognition Custom Labels project by calling CreateProject. The response is

an Amazon Resource Name (ARN) that identifies the project. After you create a project, you create

datasets for training and testing a model. For more information, see Creating training and test

datasets with images.

To create a project (SDK)

1.

If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

Use the following code to create a project.

AWS CLI
The following example creates a project and displays its ARN.

Change the value of project-name to the name of the project that you want to create.

aws rekognition create-project --project-name my_project \

Creating a project (SDK) 84

https://console.aws.amazon.com/rekognition/
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProject

Rekognition Custom Labels Guide

--profile custom-labels-access --"CUSTOM_LABELS" --
tags'{"keyl":"valuel", "key2":"value2"}"

Python

The following example creates a project and displays its ARN. Supply the following
command line arguments:

e project_name —the name of the project you want to create.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

import argparse
import logging
import boto3

from botocore.exceptions import ClientError
logger = logging.getlLogger(__name__)

def create_project(rek_client, project_name):
Creates an Amazon Rekognition Custom Labels project
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_name: A name for the new prooject.

try:
#Create the project.
logger.info("Creating project: %s",project_name)
response=rek_client.create_project(ProjectName=project_name)
logger.info("project ARN: %s",response['ProjectArn'])
return response['ProjectArn']

except ClientError as err:

logger.exception("Couldn't create project - %s: %s'", project_name,
err.response['Error']['Message'])

Creating a project (SDK) 85

Rekognition

Custom Labels Guide

raise
def add_arguments(parser):

Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_name", help="A name for the new project."

def main():
logging.basicConfig(level=1logging.INFO, format="%(levelname)s
try:
Get command line arguments.
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)
args = parser.parse_args()

print(f"Creating project: {args.project_name}")

Create the project.

: %(message)s")

session = boto3.Session(profile_name='custom-labels-access')

rekognition_client = session.client("rekognition")

project_arn=create_project(rekognition_client,
args.project_name)

print(f"Finished creating project: {args.project_name}")
print(f"ARN: {project_arn}")

except ClientError as err:
logger.exception("Problem creating project: %s'", err)
print(f"Problem creating project: {err}")

if __name__ == "__main__":
main()

Creating a project (SDK)

86

Rekognition Custom Labels Guide

Java V2
The following example creates a project and displays its ARN.

Supply the following command line argument:

e project_name - the name of the project you want to create.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.CreateProjectRequest;
import software.amazon.awssdk.services.rekognition.model.CreateProjectResponse;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import java.util.logging.Level;
import java.util.logging.Logger;

public class CreateProject {

public static final Logger logger =
Logger.getLogger(CreateProject.class.getName());

public static String createMyProject(RekognitionClient rekClient, String
projectName) {

try {

logger.log(Level.INFO, "Creating project: {03}", projectName);
CreateProjectRequest createProjectRequest =
CreateProjectRequest.builder().projectName(projectName).build();

CreateProjectResponse response =
rekClient.createProject(createProjectRequest);

Creating a project (SDK) 87

Rekognition Custom Labels Guide

logger.log(Level.INFO, "Project ARN: {0} ", response.projectArn());
return response.projectArn();

} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not create project: {0}",

e.getMessage());
throw e;

public static void main(String[] args) {

final String USAGE = "\n" + "Usage: " + "<project_name> <bucket> <image>
\n\n" + "Where:\n"
+ " project_name - A name for the new project\n\n";

if (args.length != 1) {
System.out.println(USAGE);
System.exit(1l);

String projectName = args[0];
String projectArn = null;

’

try {

// Get the Rekognition client.
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))
.region(Region.US_WEST_2)
.build();

// Create the project
projectArn = createMyProject(rekClient, projectName);

System.out.println(String.format("Created project: %s %nProject ARN:
%s'", projectName, projectArn));

rekClient.close();

Creating a project (SDK)

88

Rekognition Custom Labels Guide

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);
}

}

3. Note the name of the project ARN that's displayed in the response. You'll need it to create a
model.

4. Follow the steps in Create training and test datasets (SDK) to create the training and test

datasets for your project.

CreateProject operation request

The following is the foramt of the CreateProject operation request:

"AutoUpdate": "string",
"Feature": "string",
"ProjectName": "string",
"Tags": {
"string": "string"
}
}

Creating training and test datasets

A dataset is a set of images and labels that describe those images. Your project needs a training
dataset and a test dataset. Amazon Rekognition Custom Labels uses the training dataset to train
your model. After training, Amazon Rekognition Custom Labels uses the test dataset to verify how
well the trained model predicts the correct labels.

Create project request format 89

Rekognition Custom Labels Guide

You can create datasets with the Amazon Rekognition Custom Labels console or with the AWS SDK.
Before creating a dataset, we recommend reading Understanding Amazon Rekognition Custom

Labels. For other dataset tasks, see Managing datasets.

The steps creating training and tests datasets for a project are:
To create training and test datasets for your project

1. Determine how you need to label your training and test datasets. For more information,
Purposing datasets.

2. Collect the images for your training and test datasets. For more information, see the section
called “Preparing images”.

3. Create the training and test datasets. For more information, see Creating training and test
datasets with images. If you're using the AWS SDK, see Create training and test datasets (SDK) .

4. If necesessary, add image-level labels or bounding boxes to your dataset images. For more
information, see Labeling images.

After you create the datasets, you can train the model.

Topics

» Purposing datasets

» Preparing images

« Creating training and test datasets with images

« Labeling images

» Debugging datasets

Purposing datasets

How you label the training and test datasets in your project determines the type of model that you
create. With Amazon Rekognition Custom Labels you can create models that do the following.

« Find objects, scenes, and concepts

» Find object locations

« Find brand locations

Purposing datasets 90

Rekognition Custom Labels Guide

Find objects, scenes, and concepts
The model classifies the objects, scenes, and concepts that are associated with an entire image.

You can create two types of classification model, image classification and multi-label classification.
For both types of classification model, the model finds one or more matching labels from the
complete set of labels used for training. The training and test datasets both require at least two
labels.

Image classification
The model classifies images as belonging to a set of predefined labels. For example, you might

want a model that determines if an image contains a living space. The following image might have
a living_space image-level label.

For this type of model, add a single image-level label to each of the training and test dataset

images. For an example project, see Image classification.

Purposing datasets 91

Rekognition Custom Labels Guide

Multi-label classification

The model classifies images into multiple categories, such as the type of flower and whether it has
leaves, or not. For example, the following image might have mediterranean_spurge and no_leaves
image level labels.

For this type of model assign image-level labels for each category to the training and test dataset
images. For an example project, see Multi-label image classification.

Assigning image-level labels

If your images are stored in an Amazon S3 bucket, you can use folder names to automatically add
image-level labels. For more information, see Importing images from an Amazon S3 bucket. You
can also add image-level labels to images after you create a dataset, For more information, see
the section called “Assigning image-level labels to an image”. You can add new labels as you need

them. For more information, see Managing labels.

Find object locations

To create a model that predicts the location of objects in your images, you define object location
bounding boxes and labels for the images in your training and test datasets. A bounding box is

a box that tightly surrounds an object. For example, the following image shows bounding boxes
around an Amazon Echo and an Amazon Echo Dot. Each bounding box has an assigned label
(Amazon Echo or Amazon Echo Dot).

Purposing datasets 92

Rekognition Custom Labels Guide

To find object locations, your datasets needs at least one label. During model training, a further
label is automatically created that represents the area outside of the bounding boxes on an image.

Assigning bounding boxes

When you create your dataset, you can include bounding box information for your images. For
example, you can import a SageMaker Al Ground Truth format manifest file that contains bounding
boxes. You can also add bounding boxes after you create a dataset. For more information, see
Labeling objects with bounding boxes. You can add new labels as you need them. For more

information, see Managing labels.

Purposing datasets 93

Rekognition Custom Labels Guide

Find brand locations

If you want to find the location of brands, such as logos and animated characters, you can use two
different types of images for your training dataset images.

» Images that are of the logo only. Each image needs a single image-level label that represents the
logo name. For example, the image-level label for the following image could be Lambda.

» Images that contain the logo in natural locations, such as a football game or an architectual
diagram. Each training image needs bounding boxes that surround each instance of the logo.
For example, the following image shows an architectural diagram with labeled bounding boxes
surrounding the AWS Lambda and Amazon Pinpoint logos.

|l

ray - | N

user activity AWS Lambda

‘ recommendations @
b
Cd

We recommend that you don't mix image-level labels and bounding boxes in your training images.

Purposing datasets 94

Rekognition Custom Labels Guide

The test images must have bounding boxes around instances of the brand that you want to find.
You can split the training dataset to create the test dataset, only if the training images include
labeled bounding boxes. If the training images only have image-level labels, you must create a test
dataset set that includes images with labeled bounding boxes. If you train a model to find brand
locations, do Labeling objects with bounding boxes and Assigning image-level labels to an image

according to how you label your images.

The Brand detection example project shows how Amazon Rekognition Custom Labels uses labeled

bounding boxes to train a model that finds object locations.
Label requirements for model types
Use the following table to determine how to label your images.

You can combine image-level labels and bounding box labeled images in a single dataset. In this
case, Amazon Rekognition Custom Labels chooses whether to create an image-level model or an
object location model.

Example Training images Test images
Image classification 1 Image-level label perimage 1 Image-level label per image
Multi-label classification Multiple image-level labels Multiple image-level labels
per image per image
Find brand locations image level-labels (you can Labeled bounding boxes
also use Labeled bounding
boxes)
Find object locations Labeled bounding boxes Labeled bounding boxes

Preparing images

The images in your training and test dataset contain the objects, scenes, or concepts that you want
your model to find.

The content of images should be in a variety of backgrounds and lighting that represent the
images that you want the trained model to identify.

Preparing images 95

Rekognition Custom Labels Guide

This section provides information about the images in your training and test dataset.
Image format

You can train Amazon Rekognition Custom Labels models with images that are in PNG and in JPEG
format. Similarly, to detect custom labels using DetectCustomLabels, you need images that are
in PNG and JPEG format.

Input image recommendations

Amazon Rekognition Custom Labels requires images to train and test your model. To prepare your
images, consider following:

» Choose a specific domain for the model you want to create. For example, you could choose
a model for scenic views and another model for objects such as machine parts. Amazon
Rekognition Custom Labels works best if your images are in the chosen domain.

« Use at least 10 images to train your model.
« Images must be in PNG or JPEG format.
« Use images that show the object in a variety of lightings, backgrounds, and resolutions.

« Training and testing images should be similar to the images that you want to use the model
with.

« Decide what labels to assign to the images.

« Ensure that images are sufficiently large in terms of resolution. For more information, see
Guidelines and quotas in Amazon Rekognition Custom Labels.

« Ensure that occlusions don't obscure objects that you want to detect.
« Use images that have sufficient contrast with the background.

« Use images that are bright and sharp. Avoid using images that may be blurry due to subject and
camera motion as much as possible.

« Use an image where the object occupies a large proportion of the image.

« Images in your test dataset shouldn't be images that are in the training dataset. They should
include the objects, scenes, and concepts that the model is trained to analyze.
Image set size

Amazon Rekognition Custom Labels uses a set of images to train a model. At a minimum, you
should use at least 10 images for training. Amazon Rekognition Custom Labels stores training

Preparing images 96

Rekognition Custom Labels Guide

and testing images in datasets. For more information, see Creating training and test datasets with

Images.
Creating training and test datasets with images

You can start with a project that has a single dataset, or a project that has separate training and
test datasets. If you start with a single dataset, Amazon Rekognition Custom Labels splits your
dataset during training to create a training dataset (80%) and a test dataset (%20) for your project.
Start with a single dataset if you want Amazon Rekognition Custom Labels to decide where images
are used for training and testing. For complete control over training, testing, and performance
tuning, we recommend that you start your project with separate training and test datasets.

You can create training and test datasets for a project by importing images from one of the
following locations:

Importing images from an Amazon S3 bucket

Importing images from a local computer

Using a manifest file to import images

Copying content from an existing dataset

If you start your project with separate training and test datasets, you can use different source
locations for each dataset.

Depending on where you import your images from, your images might be unlabeled. For example,
images imported from a local computer aren't labeled. Images imported from an Amazon
SageMaker Al Ground Truth manifest file are labeled. You can use the Amazon Rekognition Custom
Labels console to add, change, and assign labels. For more information, see Labeling images.

If images are uploading with errors, images are missing, or labels are missing from images, read
Debugging a failed model training.

For more information about datasets, see Managing datasets.

Create training and test datasets (SDK)
You can use the AWS SDK to create training and test datasets.

The CreateDataset operation allows you to optionally specify tags when creating a new dataset,
for the purposes of categorizing and managing your resources.

Creating datasets with images 97

Rekognition Custom Labels Guide

Training dataset

You can use the AWS SDK to create a training dataset in the following ways.

» Use CreateDataset with an Amazon Sagemaker format manifest file that you provide. For more
information, see the section called “Creating a manifest file". For example code, see Creating a
dataset with a SageMaker Al Ground Truth manifest file (SDK).

« Use CreateDataset to copy an existing Amazon Rekognition Custom Labels dataset. For
example code, see Creating a dataset using an existing dataset (SDK).

« Create an empty dataset with CreateDataset and add dataset entries at a later time with
UpdateDatasetEntries. To create an empty dataset, see Adding a dataset to a project. To add

images to a dataset, see Adding more images (SDK). You need to add the dataset entries before

you can train a model.

Test dataset
You can use the AWS SDK to create a test dataset in the following ways:

« Use CreateDataset with an Amazon Sagemaker format manifest file that you provide. For more
information, see the section called “Creating a manifest file". For example code, see Creating a
dataset with a SageMaker Al Ground Truth manifest file (SDK).

» Use CreateDataset to copy an existing Amazon Rekognition Custom Labels dataset. For
example code, see Creating a dataset using an existing dataset (SDK).

« Create an empty dataset with CreateDataset and add dataset entries at a later time with
UpdateDatasetEntries. To create an empty dataset, see Adding a dataset to a project. To add

images to a dataset, see Adding more images (SDK). You need to add the dataset entries before

you can train a model.

« Split the training dataset into separate training and test datasets. First create an empty test
dataset with CreateDataset. Then move 20% of the training dataset entries into the test
dataset by calling DistributeDatasetEntries. To create an empty dataset, see Adding a dataset to

a project (SDK). To split the training dataset, see Distributing a training dataset (SDK).

Importing images from an Amazon S3 bucket

The images are imported from an Amazon S3 bucket. You can use the console bucket, or another
Amazon S3 bucket in your AWS account. If you are using the console bucket, the required

Creating datasets with images 98

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateDataset
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_UpdateDatasetEntries
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateDataset
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DistributeDatasetEntries

Rekognition Custom Labels Guide

permissions are already set up. If you are not using the console bucket, see Accessing external

Amazon S3 Buckets.

(® Note

You can't use the AWS SDK to create a dataset directly from images in an Amazon S3
bucket. Instead, create a manifest file that references the source locations of the images.
For more information, see Using a manifest file to import images

During dataset creation, you can choose to assign label names to images based on the name of
the folder that contains the images. The folder(s) must be a child of the Amazon S3 folder path
that you specify in S3 folder location during dataset creation. To create a dataset, see Creating a
dataset by importing images from an S3 bucket.

For example, assume the following folder structure in an Amazon S3 bucket. If you specify the
Amazon S3 folder location as S3-bucket/alexa-devices, the images in the folder echo are assigned
the label echo. Similarly, images in the folder echo-dot are assigned the label echo-dot. The names
of deeper child folders aren't used to label images. Instead, the appropriate child folder of the
Amazon S3 folder location is used. For example, images in the folder white-echo-dots are assigned
the label echo-dot. Images at the level of the S3 folder location (alexa-devices) don't have labels
assigned to them.

Folders deeper in the folder structure can be used to label images by specifying a deeper S3 folder
location. For example, If you specify S3-bucket/alexa-devices/echo-dot, Images in the folder white-
echo-dot are labeled white-echo-dot. Images outside the specified s3 folder location, such as echo,

aren't imported.

S3-bucket
alexa-devices
echo

echo-image-1l.png

echo-image-2.png

HH# .

Hit# .

echo-dot
white-echo-dot
white-echo-dot-image-1.png
white-echo-dot-image-2.png
#

Creating datasets with images 99

Rekognition Custom Labels Guide

echo-dot-image-1.png
echo-dot-image-2.png
HH# .
#i#t# .

We recommend that you use the Amazon S3 bucket (console bucket) created for you by Amazon
Rekognition when you first opened the console in the current AWS region. If the Amazon S3 bucket
that you are using is different (external) to the console bucket, the console prompts you to set up
appropriate permissions during dataset creation. For more information, see the section called “Step

2: Set up console permissions”.

Creating a dataset by importing images from an S3 bucket

The following procedure shows you how to create a dataset using images stored in the Console S3
bucket. The images are automatically labeled with the name of the folder in which they are stored.

After you have imported your images, you can add more images, assign labels, and add bounding
boxes from a dataset's gallery page. For more information, see Labeling images.

Upload your images to an Amazon Simple Storage Service bucket

1. Create a folder on your local file system. Use a folder name such as alexa-devices.

2. Within the folder you just created, create folders named after each label that you want to use.
For example, echo and echo-dot. The folder structure should be similar to the following.

alexa-devices

echo

echo-image-1.png

echo-image-2.png

.

0 ### .

echo-dot
echo-dot-image-1.png
echo-dot-image-2.png
.
.

3. Place the images that correspond to a label into the folder with the same label name.

4. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

Creating datasets with images 100

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Rekognition Custom Labels Guide

5. Add the folder you created in step 1 to the Amazon S3 bucket (console bucket) created for you
by Amazon Rekognition Custom Labels during First Time Set Up. For more information, see

Managing an Amazon Rekognition Custom Labels project.

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.

Choose Get started.

o ® N o

In the left navigation pane, choose Projects.

10. In the Projects page, choose the project to which you want to add a dataset. The details page
for your project is displayed.

11. Choose Create dataset. The Create dataset page is shown.

12. In Starting configuration, choose either Start with a single dataset or Start with a training
dataset. To create a higher quality model, we recommend starting with separate training and
test datasets.

Single dataset

a. In the Training dataset details section, choose Import images from S3 bucket.

b. In the Training dataset details section, Enter the information for steps 13 - 15 in the
Image source configuration section.

Separate training and test datasets

a. In the Training dataset details section, choose Import images from S3 bucket.

b. In the Training dataset details section, enter the information for steps 13 - 15 in the
Image source configuration section.

c. In the Test dataset details section, choose Import images from S3 bucket.

d. In the Test dataset details section, enter the information for steps 13 - 15 in the Image
source configuration section.

13. Choose Import images from Amazon S3 bucket.

14. In S3 URI, enter the Amazon S3 bucket location and folder path.

15. Choose Automatically attach labels to images based on the folder.
16. Choose Create Datasets. The datasets page for your project opens.

17. If you need to add or change labels, do Labeling images.

Creating datasets with images 101

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

18. Follow the steps in Training a model (Console) to train your model.

Importing images from a local computer
The images are loaded directly from your computer. You can upload up to 30 images at a time.

The images you upload won't have labels associated with them. For more information, see Labeling
images. If you have many images to upload, consider using an Amazon S3 bucket. For more
information, see Importing images from an Amazon S3 bucket.

® Note

You can't use the AWS SDK to create a dataset with local images. Instead, create a manifest
file and upload the images to an Amazon S3 bucket. For more information, see Using a
manifest file to import images.

To create a dataset using images on a local computer (console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Choose Use Custom Labels.

3. Choose Get started.

4. In the left navigation pane, choose Projects.

5. In the Projects page, choose the project to which you want to add a dataset. The details page
for your project is displayed.

6. Choose Create dataset. The Create dataset page is shown.

7. In Starting configuration, choose either Start with a single dataset or Start with a training
dataset. To create a higher quality model, we recommend starting with separate training and
test datasets.

Single dataset

a. In the Training dataset details section section, choose Upload images from your
computer.

b. Choose Create Dataset.

¢. On the project's dataset page, choose Add images.

Creating datasets with images 102

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

d. Choose the images you want to upload into the dataset from your computer files. You
can drag the images or choose the images that you want to upload from your local
computer.

e. Choose Upload images.

Separate training and test datasets

. In the Training dataset details section, choose Upload images from your computer.

Q)

b. In the Test dataset details section, choose Upload images from your computer.

(@ Note

Your training and test datasets can have different image sources.

c. Choose Create Datasets. Your project's datasets page appears with a Training tab and a
Test tab for the respective datasets.

d. Choose Actions and then choose Add images to training dataset.

e. Choose the images you want to upload to the dataset. You can drag the images or
choose the images that you want to upload from your local computer.

f. Choose Upload images.

g. Repeat steps 5e - 5g. For step 5e, choose Actions and then choose Add images to test
dataset.

8. Follow the steps in Labeling images to label your images.

9. Follow the steps in Training a model (Console) to train your model.

Using a manifest file to import images

You can create a dataset using an Amazon SageMaker Al Ground Truth format manifest file.
You can use the manifest file from an Amazon SageMaker Al Ground Truth job. If your images
and labels aren't in the format of a SageMaker Al Ground Truth manifest file, you can create a
SageMaker Al format manifest file and use it to import your labeled images.

The CreateDataset operation is updated to allow you to optionally specify tags when creating a
new dataset. Tags are key-value pairs that you can use to categorize and manage your resources.

Topics

Creating datasets with images 103

Rekognition Custom Labels Guide

» Creating a dataset with a SageMaker Al Ground Truth manifest file (Console)

» Creating a dataset with a SageMaker Al Ground Truth manifest file (SDK)

» Create dataset request

« Labeling images with an Amazon SageMaker Al Ground Truth job

» Creating a manifest file

« Importing image-level labels in manifest files

o Obiject localization in manifest files

« Validation rules for manifest files

« Converting other dataset formats to a manifest file

Creating a dataset with a SageMaker Al Ground Truth manifest file (Console)

The following procedure shows you how to create a dataset by using a SageMaker Al Ground Truth
format manifest file.

1. Create a manifest file for your training dataset by doing one of the following:

» Create a manifest file with a SageMaker Al GroundTruth Job by following the instructions at
Labeling images with an Amazon SageMaker Al Ground Truth job.

» Create your own manifest file by following the instructions at Creating a manifest file.

If you want to create a test dataset, repeat step 1 to create the test dataset.

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.

In the left navigation pane, choose Projects.

o v M WD

In the Projects page, choose the project to which you want to add a dataset. The details page
for your project is displayed.

N

Choose Create dataset. The Create dataset page is shown.

8. In Starting configuration, choose either Start with a single dataset or Start with a training
dataset. To create a higher quality model, we recommend starting with separate training and
test datasets.

Creating datasets with images 104

https://console.aws.amazon.com/rekognition/

Rekognition

Custom Labels Guide

Single dataset

a.

b.

C.

In the Training dataset details section, choose Import images labeled by SageMaker
Ground Truth.

In .manifest file location enter the location of the manifest file that you created in step
1.

Choose Create Dataset. The datasets page for your project opens.

Separate training and test datasets

e.

. In the Training dataset details section, choose Import images labeled by SageMaker

Ground Truth.

. In .manifest file location enter the location of the training dataset manifest file you

created in step 1.

In the Test dataset details section, choose Import images labeled by SageMaker
Ground Truth.

® Note

Your training and test datasets can have different image sources.

. In .manifest file location enter the location of the test dataset manifest file you created

in step 1.

Choose Create Datasets. The datasets page for your project opens.

9. If you need to add or change labels, do Labeling images.

10. Follow the steps in Training a model (Console) to train your model.

Creating a dataset with a SageMaker Al Ground Truth manifest file (SDK)

The following procedure shows you how to create training or test datasets from a manifest file by
using the CreateDataset API.

You can use an existing manifest file, such as the output from an SageMaker Al Ground Truth job,

or create your own manifest file.

Creating datasets with images 105

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateDataset

Rekognition Custom Labels Guide

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Create a manifest file for your training dataset by doing one of the following:

» Create a manifest file with a SageMaker Al GroundTruth Job by following the instructions at
Labeling images with an Amazon SageMaker Al Ground Truth job.

« Create your own manifest file by following the instructions at Creating a manifest file.

If you want to create a test dataset, repeat step 2 to create the test dataset.

3. Use the following example code to create the training and test dataset.
AWS CLI
Use the following code to create a dataset. Replace the following:

project_arn — the ARN of the project that you want to add the test dataset to.

type — the type of dataset that you want to create (TRAIN or TEST)

bucket — the bucket that contains the manifest file for the dataset.

manifest_file — the path and file name of the manifest file.

aws rekognition create-dataset --project-arn project_arn \
--dataset-type type \
--dataset-source '{ "GroundTruthManifest": { "S30bject": { "Bucket": "bucket",
"Name": "manifest_file" } } }' \
--profile custom-labels-access
--tags '{"keyl": "valuel", "key2": "value2"}'

Python

Use the following values to create a dataset. Supply the following command line
parameters:

« project_arn — the ARN of the project that you want to add the test dataset to.

dataset_type — the type of dataset that you want to create (train or test).
o bucket — the bucket that contains the manifest file for the dataset.

« manifest_file — the path and file name of the manifest file.

Creating datasets with images 106

Rekognition

Custom Labels Guide

#Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/
amazon-rekognition-custom-labels-developer-quide/blob/master/LICENSE-
SAMPLECODE.)

import argparse

import logging

import time

import json

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def create_dataset(rek_client, project_arn, dataset_type, bucket,
manifest_file):

Creates an Amazon Rekognition Custom Labels dataset.

:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.

:param project_arn: The ARN of the project in which you want to create a
dataset.

:param dataset_type: The type of the dataset that you want to create (train
or test).

:param bucket: The S3 bucket that contains the manifest file.

:param manifest_file: The path and filename of the manifest file.

try:
#Create the project
logger.info("Creating %s dataset for project %s",dataset_type,
project_arn)

dataset_type = dataset_type.upper()

dataset_source = json.loads(
'"{ "GroundTruthManifest": { "S30bject": { "Bucket": "'
bucket
‘", "Name": "'
manifest_file

B

+ o+ o+ o+

Creating datasets with images 107

Rekognition Custom Labels Guide

response = rek_client.create_dataset(
ProjectArn=project_arn, DatasetType=dataset_type,
DatasetSource=dataset_source

)

dataset_arn=response['DatasetArn']
logger.info("dataset ARN: %s'",dataset_arn)

finished=False
while finished is False:

dataset=rek_client.describe_dataset(DatasetArn=dataset_arn)
status=dataset['DatasetDescription']['Status']

if status == "CREATE_IN_PROGRESS":
logger.info("Creating dataset: %s ",dataset_arn)
time.sleep(5)
continue

if status == "CREATE_COMPLETE":
logger.info("Dataset created: %s", dataset_azrn)
finished=True
continue

if status == "CREATE_FAILED":
error_message = f"Dataset creation failed: {status} :

{dataset_arn}"
logger.exception(error_message)
raise Exception (error_message)

error_message = f"Failed. Unexpected state for dataset creation:

{status} : {dataset_arn}"
logger.exception(error_message)
raise Exception(error_message)

return dataset_arn

except ClientError as err:
logger.exception("Couldn't create dataset: %s",err.response['Error']

['Message'])

Creating datasets with images 108

Rekognition Custom Labels Guide

raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The ARN of the project in which you want to create
the dataset."
)

parser.add_argument(
"dataset_type", help="The type of the dataset that you want to create
(train or test)."

)

parser.add_argument(
"bucket", help="The S3 bucket that contains the manifest file."

parser.add_argument(
"manifest_file", help="The path and filename of the manifest file."

def main():
logging.basicConfig(level=1logging.INFO, format="%(levelname)s: %(message)s")
try:

#Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Creating {args.dataset_type} dataset for project
{args.project_arn}")

#Create the dataset.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

Creating datasets with images 109

Rekognition Custom Labels Guide

dataset_arn=create_dataset(rekognition_client,
args.project_arn,
args.dataset_type,
args.bucket,
args.manifest_file)

print(f"Finished creating dataset: {dataset_arn}")
except ClientError as err:

logger.exception("Problem creating dataset: %s'", err)
print(f"Problem creating dataset: {err}")

if __name__ == "__main__":
main()
Java V2

Use the following values to create a dataset. Supply the following command line
parameters:

project_arn — the ARN of the project that you want to add the test dataset to.

dataset_type — the type of dataset that you want to create (train or test).

» bucket — the bucket that contains the manifest file for the dataset.

manifest_file — the path and file name of the manifest file.

/~k
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.CreateDatasetRequest;

Creating datasets with images 110

Rekognition Custom Labels Guide

import software.amazon.awssdk.services.rekognition.model.CreateDatasetResponse;

import software.amazon.awssdk.services.rekognition.model.DatasetDescription;

import software.amazon.awssdk.services.rekognition.model.DatasetSource;

import software.amazon.awssdk.services.rekognition.model.DatasetStatus;

import software.amazon.awssdk.services.rekognition.model.DatasetType;

import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse;

import software.amazon.awssdk.services.rekognition.model.GroundTruthManifest;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import software.amazon.awssdk.services.rekognition.model.S30bject;

import java.util.logging.Level;
import java.util.logging.Logger;

public class CreateDatasetManifestFiles {

public static final Logger logger =
Logger.getlLogger(CreateDatasetManifestFiles.class.getName());

public static String createMyDataset(RekognitionClient rekClient, String
projectArn, String datasetType,
String bucket, String name) throws Exception, RekognitionException {

try {

logger.log(Level.INFO, "Creating {0} dataset for project : {1} from

s3://{2}/{3} ",
new Object[] { datasetType, projectArn, bucket, name });

DatasetType requestDatasetType = null;

switch (datasetType) {
case "train":
requestDatasetType
break;
case "test":
requestDatasetType = DatasetType.TEST;
break;
default:
logger.log(Level .SEVERE, "Could not create dataset. Unrecognized
dataset type: {0}", datasetType);
throw new Exception("Could not create dataset. Unrecognized
dataset type: " + datasetType);

DatasetType.TRAIN;

Creating datasets with images 111

Rekognition Custom Labels Guide

GroundTruthManifest groundTruthManifest =
GroundTruthManifest.builder()

.s30bject(S30bject.builder().bucket(bucket).name(name).build()).build();

DatasetSource datasetSource =
DatasetSource.builder().groundTruthManifest(groundTruthManifest).build();

CreateDatasetRequest createDatasetRequest =
CreateDatasetRequest.builder().projectArn(projectArn)

.datasetType(requestDatasetType).datasetSource(datasetSource).build();

CreateDatasetResponse response =
rekClient.createDataset(createDatasetRequest);

boolean created = false;

do {

DescribeDatasetRequest describeDatasetRequest =
DescribeDatasetRequest.builder()
.datasetArn(response.datasetArn()).build();
DescribeDatasetResponse describeDatasetResponse =
rekClient.describeDataset(describeDatasetRequest);

DatasetDescription datasetDescription =
describeDatasetResponse.datasetDescription();

DatasetStatus status = datasetDescription.status();

logger.log(Level .INFO, "Creating dataset ARN: {0} ",
response.datasetArn());

switch (status) {

case CREATE_COMPLETE:
logger.log(Level.INFO, "Dataset created");
created = true;
break;

Creating datasets with images 112

Rekognition Custom Labels Guide

case CREATE_IN_PROGRESS:
Thread.sleep(5000);
break;

case CREATE_FAILED:
String error = "Dataset creation failed: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " +
response.datasetArn();
logger.log(Level .SEVERE, error);
throw new Exception(error);

default:
String unexpectedError = "Unexpected creation state: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " +
response.datasetArn();
logger.log(Level .SEVERE, unexpectedError);
throw new Exception(unexpectedError);

} while (created == false);
return response.datasetArn();

} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not create dataset: {0}",
e.getMessage());
throw e;

public static void main(String[] args) {

String datasetType = null;
String bucket = null;
String name = null;

String projectArn = null;
String datasetAzrn null;

final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_type>
<dataset_arn>\n\n" + "Where:\n"

Creating datasets with images 113

Rekognition Custom Labels Guide

+ " project_arn - the ARN of the project that you want to add
copy the datast to.\n\n"
+ " dataset_type - the type of the dataset that you want to
create (train or test).\n\n"
+ " bucket - the S3 bucket that contains the manifest file.\n
\n"
+ " name - the location and name of the manifest file within

the bucket.\n\n";

if (args.length != 4) {
System.out.println(USAGE);
System.exit(1l);

projectArn = args[Q];
datasetType = args[1l];
bucket = args[2];

name = args[3];

try {

// Get the Rekognition client
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))
.region(Region.US_WEST_2)
.build();

// Create the dataset
datasetArn = createMyDataset(rekClient, projectArn, datasetType,
bucket, name);

System.out.println(String.format("Created dataset: %s",
datasetArn));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1l);
} catch (Exception rekError) {
logger.log(Level .SEVERE, "Error: {@}", rekError.getMessage());

Creating datasets with images 114

Rekognition Custom Labels Guide

System.exit(1);

}

4. If you need to add or change labels, see Managing Labels (SDK).

5. Follow the steps in Training a model (SDK) to train your model.

Create dataset request

The following is the foramt of the CreateDataset operation request:

{

"DatasetSource": {
"DatasetArn": "string",
"GroundTruthManifest": {
"S30bject": {

"Bucket": "string",
"Name": "string",
"Version": "string"

}

}

1Y

"DatasetType": "string",
"ProjectArn": "string",
"Tags": {

"string": "string"

}

}

Labeling images with an Amazon SageMaker Al Ground Truth job

With Amazon SageMaker Al Ground Truth, you can use workers from either Amazon Mechanical
Turk, a vendor company that you choose, or an internal, private workforce along with machine
learning that allows you to create a labeled set of images. Amazon Rekognition Custom Labels
imports SageMaker Al Ground Truth manifest files from an Amazon S3 bucket that you specify.

Amazon Rekognition Custom Labels supports the following SageMaker Al Ground Truth tasks.

Creating datasets with images 115

Rekognition Custom Labels Guide

» Image Classification

« Bounding Box

The files you import are the images and a manifest file. The manifest file contains label and
bounding box information for the images you import.

Amazon Rekognition needs permissions to access the Amazon S3 bucket where your images are
stored. If you are using the console bucket set up for you by Amazon Rekognition Custom Labels,
the required permissions are already set up. If you are not using the console bucket, see Accessing
external Amazon S3 Buckets.

Creating a manifest file with a SageMaker Al Ground Truth job (Console)

The following procedure shows you how to create a dataset by using images labeled by a
SageMaker Al Ground Truth job. The job output files are stored in your Amazon Rekognition
Custom Labels console bucket.

To create a dataset using images labeled by a SageMaker Al Ground Truth job (console)

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. Inthe console bucket, create a folder to hold your training images.

(® Note

The console bucket is created when you first open the Amazon Rekognition Custom
Labels console in an AWS Region. For more information, see Managing an Amazon

Rekognition Custom Labels project.

Upload your images to the folder that you just created.

In the console bucket, create a folder to hold the output of the Ground Truth job.

Open the SageMaker Al console at https://console.aws.amazon.com/sagemaker/.

o v & W

Create a Ground Truth labeling job. You'll need the Amazon S3 URLs for the folders you
created in step 2 and step 4. For more information, see Use Amazon SageMaker Ground Truth

for Data Labeling.

7. Note the location of the output.manifest file in the folder you created in step 4. It should
be in the sub-folder Ground-Truth-Job-Name/manifests/output.

Creating datasets with images 116

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-image-classification.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-bounding-box.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-folder.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://console.aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html

Rekognition Custom Labels Guide

8. Follow the instructions at Creating a dataset with a SageMaker Al Ground Truth manifest file
(Console) to create a dataset with the uploaded manifest file. For step 8, in .manifest file

location, enter the Amazon S3 URL for the location you noted in the previous step. If you are
using the AWS SDK, do Creating a dataset with a SageMaker Al Ground Truth manifest file
(SDK).

9. Repeat steps 1 - 6 to create SageMaker Al Ground Truth job for your test dataset.

Creating a manifest file

You can create a test or training dataset by importing a SageMaker Al Ground Truth format
manifest file. If your images are labeled in a format that isn't a SageMaker Al Ground Truth
manifest file, use the following information to create a SageMaker Al Ground Truth format
manifest file.

Manifest files are in JSON lines format where each line is a complete JSON object representing the
labeling information for an image. Amazon Rekognition Custom Labels supports SageMaker Al
Ground Truth manifests with JSON lines in the following formats:

« Classification Job Output — Use to add image-level labels to an image. An image-level label

defines the class of scene, concept, or object (if object location information isn't needed) that's
on an image. An image can have more that one image-level label. For more information, see
Importing image-level labels in manifest files.

« Bounding Box Job Output — Use to label the class and location of one or more objects on an

image. For more information, see Object localization in manifest files.

Image-level and localization (bounding-box) JSON lines can be chained together in the same
manifest file.

® Note

The JSON line examples in this section are formatted for readability.

When you import a manifest file, Amazon Rekognition Custom Labels applies validation rules for
limits, syntax, and semantics. For more information, see Validation rules for manifest files.

Creating datasets with images 117

http://jsonlines.org
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-output.html#sms-output-class
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-output.html#sms-output-box

Rekognition Custom Labels Guide

The images referenced by a manifest file must be located in the same Amazon S3 bucket. The
manifest file can be located in a different Amazon S3 bucket than the Amazon S3 bucket that
stores the images. You specify the location of an image in the source-ref field of a JSON line.

Amazon Rekognition needs permissions to access the Amazon S3 bucket where your images are
stored. If you are using the console bucket set up for you by Amazon Rekognition Custom Labels,
the required permissions are already set up. If you are not using the console bucket, see Accessing
external Amazon S3 Buckets.

Topics

» Creating a manifest file

Creating a manifest file

The following procedure creates a project with a training and test dataset. The datasets are created
from training and test manifest files that you create.

To create a dataset using a SageMaker Al Ground Truth format manifest file (console)

1. Inthe console bucket, create a folder to hold your manifest files.

2. Inthe console bucket, create a folder to hold your images.
3. Upload your images to the folder you just created.
4

Create a SageMaker Al Ground Truth format manifest file for your training dataset. For more
information, see Importing image-level labels in manifest files and Object localization in

manifest files.

/A Important

The source-ref field value in each JSON line must map to an image that you
uploaded.

Create an SageMaker Al Ground Truth format manifest file for your test dataset.

Upload your manifest files to the folder that you just created.

Note the location of the manifest file.

© N o U

Follow the instructions at Creating a dataset with a SageMaker Al Ground Truth manifest file

(Console) to create a dataset with the uploaded manifest file. For step 8, in .manifest file

Creating datasets with images 118

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-folder.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Rekognition Custom Labels Guide

location, enter the Amazon S3 URL for the location you noted in the previous step. If you are
using the AWS SDK, do Creating a dataset with a SageMaker Al Ground Truth manifest file
(SDK).

Importing image-level labels in manifest files

To import image-level labels (images labeled with scenes, concepts, or objects that don't require
localization information), you add SageMaker Al Ground Truth Classification Job Output format
JSON lines to a manifest file. A manifest file is made of one or more JSON lines, one for each image
that you want to import.

® Tip
To simplify creation of a manifest file, we provide a Python script that creates a manifest
file from a CSV file. For more information, see Creating a manifest file from a CSV file.

To create a manifest file for image-level labels

1. Create an empty text file.

2. Add a JSON line for each image the that you want to import. Each JSON line should look
similar to the following.

{"source-ref":"s3://custom-labels-console-us-east-1-nnnnnnnnnn/gt-job/
manifest/IMG_1133.png", "TestCLConsoleBucket":0,"TestCLConsoleBucket-
metadata":{"confidence":0.95, "job-name":"labeling-job/
testclconsolebucket","class-name":"Echo Dot", "human-annotated":"yes", "creation-
date":"2020-04-15T20:17:23.433061", "type":"groundtruth/image-classification"}}

3. Save the file. You can use the extension .manifest, but it is not required.

4. Create a dataset using the manifest file that you created. For more information, see To create a
dataset using a SageMaker Al Ground Truth format manifest file (console).

Image-Level JSON Lines

In this section, we show you how to create a JSON line for a single image. Consider the following
image. A scene for the following image might be called Sunrise.

Creating datasets with images 119

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-output.html#sms-output-class

Rekognition Custom Labels Guide

L

- b

The JSON line for the preceding image, with the scene Sunrise, might be the following.

"source-ref": "s3://bucket/images/sunrise.png",
"testdataset-classification_Sunrise": 1,
"testdataset-classification_Sunrise-metadata": {

"confidence": 1,

"job-name": "labeling-job/testdataset-classification_Sunrise",

"class-name": "Sunrise",

"human-annotated": "yes",

"creation-date": "2020-03-06T17:46:39.176",

"type": "groundtruth/image-classification"

Creating datasets with images 120

Rekognition Custom Labels Guide

Note the following information.
source-ref

(Required) The Amazon S3 location of the image. The format is "s3://BUCKET/0BJECT_PATH".
Images in an imported dataset must be stored in the same Amazon S3 bucket.

testdataset-classification_Sunrise

(Required) The label attribute. You choose the field name. The field value (1 in the preceding
example) is a label attribute identifier. It is not used by Amazon Rekognition Custom Labels and can
be any integer value. There must be corresponding metadata identified by the field name with -
metadata appended. For example, "testdataset-classification_Sunrise-metadata".

testdataset-classification_Sunrise-metadata

(Required) Metadata about the label attribute. The field name must be the same as the label
attribute with -metadata appended.

confidence

(Required) Currently not used by Amazon Rekognition Custom Labels but a value between 0
and 1 must be supplied.

job-name

(Optional) A name that you choose for the job that processes the image.

class-name

(Required) A class name that you choose for the scene or concept that applies to the image. For
example, "Sunrise".

human-annotated

(Required) Specify "yes", if the annotation was completed by a human. Otherwise "no".

creation-date

(Required) The Coordinated Universal Time (UTC) date and time that the label was created.
type

(Required) The type of processing that should be applied to the image. For image-level labels,
the value is "groundtruth/image-classification".

Creating datasets with images 121

Rekognition Custom Labels Guide

Adding multiple image-level labels to an image

You can add multiple labels to an image. For example, the follow JSON adds two labels, football
and ball to a single image.

"source-ref": "S3 bucket location",
"sport@":0, # FIRST label
"sport@-metadata": {
"class-name": "football",
"confidence": 0.8,
"type":"groundtruth/image-classification",
"job-name": "identify-sport",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256"
.
"sportl":1, # SECOND label
"sportl-metadata": {
"class-name": "ball",
"confidence": 0.8,
"type":"groundtruth/image-classification",
"job-name": "identify-sport",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256"
}

} # end of annotations for 1 image

Object localization in manifest files

You can import images labeled with object localization information by adding SageMaker Al
Ground Truth Bounding Box Job Output format JSON lines to a manifest file.

Localization information represents the location of an object on an image. The location is
represented by a bounding box that surrounds the object. The bounding box structure contains the
upper-left coordinates of the bounding box and the bounding box's width and height. A bounding
box format JSON line includes bounding boxes for the locations of one or more an objects on an
image and the class of each object on the image.

A manifest file is made of one or more JSON lines, each line contains the information for a single
image.

Creating datasets with images 122

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-output.html#sms-output-box

Rekognition Custom Labels Guide

To create a manifest file for object localization

1. Create an empty text file.

2. Add a JSON line for each image the that you want to import. Each JSON line should look
similar to the following.

{"source-ref": "s3://bucket/images/IMG_1186.png", "bounding-box": {"image_size":
[{"width": 640, "height": 480, "depth": 3}], "annotations": [{ "class_id":
1, "top": 251, "left": 399, "width": 155, "height": 101}, {"class_id": 0,
"top": 65, "left": 86, "width": 220, "height": 334}]}, "bounding-box-metadata":
{"objects": [{ "confidence": 1}, {"confidence": 1}], "class-map": {"0": "Echo",
"1": "Echo Dot"}, "type": "groundtruth/object-detection", "human-annotated":
"yes", "creation-date": "2013-11-18T02:53:27", "job-name": "my job"}}

3. Save the file. You can use the extension .manifest, but it is not required.

4. Create a dataset using the file that you just created. For more information, see To create a
dataset using a SageMaker Al Ground Truth format manifest file (console).

Object bounding Box JSON lines

In this section, we show you how to create a JSON line for a single image. The following image
shows bounding boxes around Amazon Echo and Amazon Echo Dot devices.

Creating datasets with images 123

Rekognition Custom Labels Guide

The following is the bounding box JSON line for the preceding image.

{
"source-ref": "s3://custom-labels-bucket/images/IMG_1186.png",
"bounding-box": {
"image_size": [{

"width": 640,
"height": 480,
"depth": 3

11,

"annotations": [{
"class_id": 1,

"top": 251,
"left": 399,
"width": 155,

Creating datasets with images 124

Rekognition Custom Labels Guide

"height": 101
o Aq
"class_id": 0,
"top": 65,
"left": 86,
"width": 220,
"height": 334
1]
},
"bounding-box-metadata": {
"objects": [{
"confidence": 1

I

"confidence": 1

1,
"class-map": {
"Q": "Echo",
"1": "Echo Dot"
},
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2013-11-18T02:53:27",
"job-name": "my job"
}
}

Note the following information.
source-ref

(Required) The Amazon S3 location of the image. The format is "s3://BUCKET/0BJECT_PATH".
Images in an imported dataset must be stored in the same Amazon S3 bucket.

bounding-box

(Required) The label attribute. You choose the field name. Contains the image size and the
bounding boxes for each object detected in the image. There must be corresponding metadata
identified by the field name with -metadata appended. For example, "bounding-box-
metadata".

image_size

(Required) A single element array containing the size of the image in pixels.

Creating datasets with images 125

Rekognition Custom Labels Guide

 height — (Required) The height of the image in pixels.
» width - (Required) The depth of the image in pixels.

« depth - (Required) The number of channels in the image. For RGB images, the value is 3. Not
currently used by Amazon Rekognition Custom Labels, but a value is required.

annotations

(Required) An array of bounding box information for each object detected in the image.

« class_id - (Required) Maps to the label in class-map. In the preceding example, the object with
the class_id of 1 is the Echo Dot in the image.

 top — (Required) The distance from the top of the image to the top of the bounding box, in
pixels.

o left — (Required) The distance from the left of the image to the left of the bounding box, in
pixels.

» width — (Required) The width of the bounding box, in pixels.
 height — (Required) The height of the bounding box, in pixels.

bounding-box-metadata

(Required) Metadata about the label attribute. The field name must be the same as the label
attribute with -metadata appended. An array of bounding box information for each object
detected in the image.

Objects

(Required) An array of objects that are in the image. Maps to the annotations array by index. The
confidence attribute isn't used by Amazon Rekognition Custom Labels.

class-map

(Required) A map of the classes that apply to objects detected in the image.
type

(Required) The type of classification job. "groundtruth/object-detection" identifies the
job as object detection.

creation-date

(Required) The Coordinated Universal Time (UTC) date and time that the label was created.

Creating datasets with images 126

Rekognition Custom Labels Guide

human-annotated

(Required) Specify "yes", if the annotation was completed by a human. Otherwise "no".

job-name

(Optional) The name of the job that processes the image.

Validation rules for manifest files

When you import a manifest file, Amazon Rekognition Custom Labels applies validation rules for
limits, syntax, and semantics. The SageMaker Al Ground Truth schema enforces syntax validation.
For more information, see Output. The following are the validation rules for limits and semantics.

(® Note

» The 20% invalidity rules apply cumulatively across all validation rules. If the import
exceeds the 20% limit due to any combination, such as 15% invalid JSON and 15%
invalid images, the import fails.

« Each dataset object is a line in the manifest. Blank/invalid lines are also counted as
dataset objects.

« Overlaps are (common labels between test and train)/(train labels).

Topics

e Limits

e Semantics

Limits
Validation Limit Error raised
Manifest file size Maximum 1 GB Error
Maximum line count for a Maximum of 250,000 dataset Error
manifest file objects as lines in a manifest.

Creating datasets with images 127

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-output.html

Rekognition

Custom Labels Guide

Validation

Lower boundary on total
number of valid dataset
objects per label

Lower boundary on labels
Upper bound on labels

Minimum bounding boxes per
image

Maximum bounding boxes per
image

Semantics

Validation
Empty manifest

Missing/in-accessible source-
ref object

Missing/in-accessible source-
ref object

Test labels not present in
training dataset

Mix of label vs. object
examples for same label in
a dataset. Classification and
detection for the same class
in a dataset object.

>=2

<= 250

50

Limit

Number of objects less than
20%

Number of objects > 20%

At least 50% overlap in the
labels

Error raised

Error

Error
Error

None

None

Error raised
Error

Warning

Error

Error

No error or warning

Creating datasets with images

128

Rekognition Custom Labels Guide

Validation Limit Error raised
Overlapping assets between There should not be an
test and train overlap between test and

training datasets.

Images in a dataset must be Error if the objects are in a Error
from same bucket different bucket

Converting other dataset formats to a manifest file

You can use the following information to create Amazon SageMaker Al format manifest files from a
variety of source dataset formats. After creating the manifest file, use it to create to a dataset. For
more information, see Using a manifest file to import images.

Topics

« Transforming a COCO dataset into a manifest file format

« Transforming multi-label SageMaker Al Ground Truth manifest files

» Creating a manifest file from a CSV file

Transforming a COCO dataset into a manifest file format

COCO is a format for specifying large-scale object detection, segmentation, and captioning
datasets. This Python example shows you how to transform a COCO object detection format
dataset into an Amazon Rekognition Custom Labels bounding box format manifest file. This

section also includes information that you can use to write your own code.

A COCO format JSON file consists of five sections providing information for an entire dataset. For
more information, see The COCO dataset format.

« info - general information about the dataset.
« licenses - license information for the images in the dataset.
« images - a list of images in the dataset.

« annotations - a list of annotations (including bounding boxes) that are present in all images in
the dataset.

» categories - a list of label categories.

Creating datasets with images 129

http://cocodataset.org/#home

Rekognition Custom Labels Guide

You need information from the images, annotations, and categories lists to create an
Amazon Rekognition Custom Labels manifest file.

An Amazon Rekognition Custom Labels manifest file is in JSON lines format where each line
has the bounding box and label information for one or more objects on an image. For more
information, see Object localization in manifest files.

Mapping COCO Objects to a Custom Labels JSON Line

To transform a COCO format dataset, you map the COCO dataset to an Amazon Rekognition
Custom Labels manifest file for object localization. For more information, see Object localization

in manifest files. To build a JSON line for each image, the manifest file needs to map the COCO
dataset image, annotation, and category object field IDs.

The following is an example COCO manifest file. For more information, see The COCO dataset

format.

"info": {
"description": "COCO 2017 Dataset","url": "http://cocodataset.org","version":
"1.0","year": 2017, "contributor": "COCO Consortium", "date_created": "2017/09/01"
I
"licenses": [
{"url": "http://creativecommons.org/licenses/by/2.0/","id": 4,"name":
"Attribution License"}
1,
"images": [

"id": 242287, "license": 4, "coco_url": "http://images.cocodataset.org/
val2017/xxxxxxxxxxxx.jpg", "flickr_url": "http://farm3.staticflickr.com/2626/
XXXXXXXXXXXX.jpg", "width": 426, "height": 640, "file_name": "XxXxxxxxxxx.jpg",

"date_captured": "2013-11-15 02:41:42"},
{"id": 245915, "license": 4, "coco_url": "http://images.cocodataset.org/
val2017/nnnnnnnnnnnn. jpg", "flickr_url": "http://farml.staticflickr.com/88/

XXXXXXXXXXXX.jpg", "width": 640, "height": 480, "file_name": "nnnnnnnnnn.jpg",
"date_captured": "2013-11-18 02:53:27"}
1,

"annotations": [

{"id": 125686, '"category_ id": @, "iscrowd": @, "segmentation": [[164.81,
417.51,...... 167.55, 410.64]], "image_id": 242287, "area": 42061.80340000001, '"bbox":
[19.23, 383.18, 314.5, 244.46]}%,

{"id": 1409619, "category_id": @, "iscrowd": @, "segmentation": [[376.81,
238.8,........ 382.74, 241.17]], "image_id": 245915, "area": 3556.2197000000015,
"bbox": [399, 251, 155, 1011},

Creating datasets with images

130

Rekognition Custom Labels Guide

{"id": 1410165, "category_id": 1, "iscrowd": @, "segmentation": [[486.34,

239.01,.......... 495.95, 244.39]], "image_id": 245915, "area": 1775.8932499999994,
"bbox": [86, 65, 220, 334]}
1,
"categories": [
{"supercategory": "speaker","id": 0,'"name": "echo"},
{"supercategory": "speaker","id": 1,"name": "echo dot"}
]

The following diagram shows how the COCO dataset lists for a dataset map to Amazon
Rekognition Custom Labels JSON lines for an image. Every JSON line for an image posseess a
source-ref, job, and job metadata field. Matching colors indicate information for a single image.

Note that in the manifest an individual image may have multiple annotations and metadata/
categories.

Creating datasets with images 131

Rekognition Custom Labels Guide

Coco Manifest

Coco Manifest

—

images . .
annotations categories
Custom Labels JSON Lines
[[
source-ref (image) .) job metadata
Job (annotations) (labels/categories)
Image JSON Line
source-ref job job metadata
Image JSON Line
source-ref job job metadata
Image JSON Line

To get the COCO objects for a single JSON line

1. For each image in the images list, get the annotation from the annotations list where the value
of the annotation field image_id matches the image id field.

2. For each annotation matched in step 1, read through the categories list and get each
category where the value of the category field id matches the annotation object
category_id field.

Creating datasets with images 132

Rekognition Custom Labels Guide

3. Create a JSON line for the image using the matched image, annotation, and category
objects. To map the fields, see Mapping COCO object fields to a Custom Labels JSON line

object fields.

4. Repeat steps 1-3 until you have created JSON lines for each image object in the images list.

For example code, see Transforming a COCO dataset.

Mapping COCO object fields to a Custom Labels JSON line object fields

After you identify the COCO objects for an Amazon Rekognition Custom Labels JSON line, you
need to map the COCO object fields to the respective Amazon Rekognition Custom Labels JSON
line object fields. The following example Amazon Rekognition Custom Labels JSON line maps
one image (1d=000000245915) to the preceding COCO JSON example. Note the following
information.

« source-ref is the location of the image in an Amazon S3 bucket. If your COCO images aren't
stored in an Amazon S3 bucket, you need to move them to an Amazon S3 bucket.

« The annotations list contains an annotation object for each object on the image. An
annotation object includes bounding box information (top, 1left,width, height) and a label
identifier (class_id).

» The label identifier (class_id) maps to the class-map list in the metadata. It lists the labels
used on the image.

{
"source-ref": "s3://custom-labels-bucket/images/000000245915. jpg",
"bounding-box": {
"image_size": {

"width": 640,
"height": 480,
"depth": 3

.

"annotations": [{
"class_id": 0,
"top": 251,
"left": 399,
"width": 155,
"height": 101

Yo &

Creating datasets with images 133

Rekognition Custom Labels Guide

"class_id": 1,
"top": 65,
"left": 86,
"width": 220,
"height": 334
1]
},
"bounding-box-metadata": {
"objects": [{
"confidence": 1

I

"confidence": 1

1,

"class-map": {
"@": "Echo",
"1": "Echo Dot"

},
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256",
"job-name": "my job"

}

}

Use the following information to map Amazon Rekognition Custom Labels manifest file fields to
COCO dataset JSON fields.

source-ref

The S3 format URL for the location of the image. The image must be stored in an S3 bucket. For
more information, see source-ref. If the coco_url COCO field points to an S3 bucket location, you
can use the value of coco_url for the value of source-ref. Alternatively, you can map source-
ref to the file_name (COCO) field and in your transform code, add the required S3 path to where
the image is stored.

bounding-box

A label attribute name of your choosing. For more information, see bounding-box.

image_size

The size of the image in pixels. Maps to an image object in the images list.

Creating datasets with images 134

Rekognition Custom Labels Guide

e height->image.height
e width->image.width

« depth-> Not used by Amazon Rekognition Custom Labels but a value must be supplied.
annotations
A list of annotation objects. There's one annotation for each object on the image.

annotation

Contains bounding box information for one instance of an object on the image.

e class_id -> numerical id mapping to Custom Label's class-map list.
* top->Dbbox[1]

» left ->bbox[0]

e width ->bbox[2]

e height -> bbox[3]

bounding-box-metadata

Metadata for the label attribute. Includes the labels and label identifiers. For more information, see
bounding-box-metadata.

Objects
An array of objects in the image. Maps to the annotations list by index.
Object

« confidence->Not used by Amazon Rekognition Custom Labels, but a value (1) is required.

class-map

A map of the labels (classes) that apply to objects detected in the image. Maps to category objects
in the categories list.

e id-> category.id

Creating datasets with images 135

Rekognition Custom Labels Guide

e id value -> category.name

type
Must be groundtruth/object-detection
human-annotated

Specify yes or no. For more information, see bounding-box-metadata.

creation-date -> image.date_captured

The creation date and time of the image. Maps to the image.date_captured field of an image in the
COCO images list. Amazon Rekognition Custom Labels expects the format of creation-date to
be Y-M-DTH:M:S.

job-name
A job name of your choosing.
The COCO dataset format

A COCO dataset consists of five sections of information that provide information for the entire
dataset. The format for a COCO object detection dataset is documented at COCO Data Format.

« info — general information about the dataset.
« licenses - license information for the images in the dataset.
« images - a list of images in the dataset.

« annotations - a list of annotations (including bounding boxes) that are present in all images in
the dataset.

« categories —a list of label categories.

To create a Custom Labels manifest, you use the images, annotations, and categories lists
from the COCO manifest file. The other sections (info, licences) aren't required. The following is
an example COCO manifest file.

"info": {

Creating datasets with images 136

http://cocodataset.org/#format-data

Rekognition Custom Labels Guide

"description": "COCO 2017 Dataset","url": "http://cocodataset.org","version":
"1.0","year": 2017, "contributor": "COCO Consortium", "date_created": "2017/09/01"
},
"licenses": [
{"url": "http://creativecommons.org/licenses/by/2.0/","id": 4,"name":
"Attribution License"}
1,
"images": [

{"id": 242287, "license": 4, "coco_url": "http://images.cocodataset.org/
val2017/xxxxxxxxxxxx.jpg", "flickr_url": "http://farm3.staticflickr.com/2626/
XXXXXXXXXXXX.jpg", "width": 426, "height": 640, "file_name": "XXXXXXXXX.jpg",

"date_captured": "2013-11-15 02:41:42"},

{"id": 245915, "license": 4, "coco_url": "http://images.cocodataset.org/

val2@017/nnnnnnnnnnnn.jpg", "flickr_url": "http://farml.staticflickr.com/88/

XXXXXXXXXXXX.jpg", "width": 640, "height": 480, "file_name": "nnnnnnnnnn.jpg",
"date_captured": "2013-11-18 02:53:27"}
iF

"annotations": [

{"id": 125686, '"category_id": @, "iscrowd": @, "segmentation": [[164.81,
417.51,...... 167.55, 410.64]], "image_id": 242287, "area": 42061.80340000001, "bbox":
[19.23, 383.18, 314.5, 244.46]}%,

{"id": 1409619, "category_id": @, "iscrowd": @, "segmentation": [[376.81,
238.8,........ 382.74, 241.17]], "image_id": 245915, "area": 3556.2197000000015,
"bbox": [399, 251, 155, 101]3},

{"id": 1410165, "category_id": 1, "iscrowd": @, "segmentation": [[486.34,

239.01,.......... 495.95, 244.39]], "image_id": 245915, "area": 1775.8932499999994,
"bbox": [86, 65, 220, 334]}

1,

"categories": [
{"supercategory": "speaker","id": 0,'"name": "echo"},
{"supercategory": "speaker","id": 1,"name": "echo dot"}

]

}

images list

The images referenced by a COCO dataset are listed in the images array. Each image object
contains information about the image such as the image file name. In the following example
image object, note the following information and which fields are required to create an Amazon
Rekognition Custom Labels manifest file.

« id - (Required) A unique identifier for the image. The id field maps to the id field in the
annotations array (where bounding box information is stored).

Creating datasets with images 137

Rekognition Custom Labels Guide

« license - (Not Required) Maps to the license array.

e coco_url - (Optional) The location of the image.

o flickr_url - (Not required) The location of the image on Flickr.
« width - (Required) The width of the image.

« height - (Required) The height of the image.

« file_name - (Required) The image file name. In this example, file_name and id match, but
this is not a requirement for COCO datasets.

« date_captured —-(Required) the date and time the image was captured.

{
"id": 245915,
"license": 4,
"coco_url": "http://images.cocodataset.org/val2017/nnnnnnnnnnnn.jpg",
"flickr_url": "http://farml.staticflickr.com/88/nnnnnnnnnnnnnnnnnnn.jpg",
"width": 640,
"height": 480,
"file_name": "000000245915.jpg",
"date_captured": "2013-11-18 ©02:53:27"
}

annotations (bounding boxes) list

Bounding box information for all objects on all images is stored the annotations list. A single
annotation object contains bounding box information for a single object and the object's label on
an image. There is an annotation object for each instance of an object on an image.

In the following example, note the following information and which fields are required to create an
Amazon Rekognition Custom Labels manifest file.

« id - (Not required) The identifier for the annotation.
« image_id - (Required) Corresponds to the image id in the images array.

« category_id - (Required) The identifier for the label that identifies the object within a
bounding box. It maps to the id field of the categories array.

« iscrowd - (Not required) Specifies if the image contains a crowd of objects.

« segmentation - (Not required) Segmentation information for objects on an image. Amazon
Rekognition Custom Labels doesn't support segmentation.

Creating datasets with images 138

Rekognition Custom Labels Guide

« area - (Not required) The area of the annotation.

« bbox - (Required) Contains the coordinates, in pixels, of a bounding box around an object on the
image.

"id": 1409619,
"category_id": 1,
"iscrowd": 0O,
"segmentation": [
[86.0, 238.8,.......... 382.74, 241.17]

1,

"image_id": 245915,

"area": 3556.2197000000015,
"bbox": [86, 65, 220, 334]

categories list

Label information is stored the categories array. In the following example category object, note
the following information and which fields are required to create an Amazon Rekognition Custom
Labels manifest file.

» supercategory - (Not required) The parent category for a label.

« id - (Required) The label identifier. The id field maps to the category_id field in an
annotation object. In the following example, The identifier for an echo dot is 2.

« name - (Required) the label name.

{"supercategory": "speaker","id": 2,"name": "echo dot"}

Transforming a COCO dataset

Use the following Python example to transform bounding box information from a COCO format
dataset into an Amazon Rekognition Custom Labels manifest file. The code uploads the created
manifest file to your Amazon S3 bucket. The code also provides an AWS CLI command that you can
use to upload your images.

Creating datasets with images 139

Rekognition Custom Labels Guide

To transform a COCO dataset (SDK)

1.

If you haven't already:

Make sure you have AmazonS3FullAccess permissions. For more information, see Set up
SDK permissions.

Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 4:
Set up the AWS CLI and AWS SDKs.

Use the following Python code to transform a COCO dataset. Set the following values.

s3_bucket - The name of the S3 bucket in which you want to store the images and
Amazon Rekognition Custom Labels manifest file.

s3_key_path_images - The path to where you want to place the images within the S3
bucket (s3_bucket).

s3_key_path_manifest_file - The path to where you want to place the Custom Labels
manifest file within the S3 bucket (s3_bucket).

local_path - The local path to where the example opens the input COCO dataset and also
saves the new Custom Labels manifest file.

local_images_path - The local path to the images that you want to use for training.
coco_manifest - The input COCO dataset filename.

cl_manifest_file - A name for the manifest file created by the example. The file is
saved at the location specified by 1ocal_path. By convention, the file has the extension
.manifest, but this is not required.

job_name — A name for the Custom Labels job.

import json

import os

import random

import shutil

import datetime

import botocore

import boto3

import PIL.Image as Image
import io

#S3 location for images
s3_bucket = 'bucket'

Creating datasets with images 140

Rekognition

Custom Labels Guide

s3_key_path_manifest_file = 'path to custom labels manifest file/'
s3_key_path_images = 'path to images/'

s3_path='s3://' + s3_bucket + '/' + s3_key_path_images

s3 boto3.resource('s3')

#Local file information

local_path="'path to input COCO dataset and output Custom Labels manifest/'

local_images_path="'path to COCO images/'
coco_manifest = 'COCO dataset JSON file name'
coco_json_file local_path + coco_manifest

job_name="'Custom Labels job name'
cl_manifest_file = 'custom_labels.manifest'

label_attribute ='bounding-box'

open(local_path + cl_manifest_file, 'w').close()
class representing a Custom Label JSON line for an image
class cl_json_line:

def __init_ (self,job, img):

#Get image info. Annotations are dealt with seperately
sizes=[]

image_size={}

image_size["width"] = img["width"]

image_size["depth"] = 3

image_size["height"] = img["height"]
sizes.append(image_size)

bounding_box={3}
bounding_box["annotations"] = []
bounding_box["image_size"] = sizes

self.__dict_ ["source-ref"] = s3_path + img['file_name']
self.__dict_ [job]

bounding_box

#get metadata

metadata {3

metadatal['job-name'] = job_name

metadatal['class-map'] = {}

metadatal 'human-annotated']="yes'

metadatal'objects'] = []

date_time_obj = datetime.datetime.strptime(img['date_captured'],
%H:%M:%S"')

Creating datasets with images

141

Rekognition

Custom Labels Guide

metadatal['creation-date']= date_time_obj.strftime('%Y-%m-%dT%H:%M:%S")

metadatal['type']="'groundtruth/object-detection'

self.__dict_ [job + '-metadata'] = metadata

print("Getting image, annotations, and categories from COCO file..

with open(coco_json_file) as f:

#Get custom label compatible info
js = json.load(f)

images = js['images']

categories = js['categories']
annotations = js['annotations']

print('Images: ' + str(len(images)))
print('annotations: ' + str(len(annotations)))
print('categories: ' + str(len (categories)))

print("Creating CL JSON lines...")

)

images_dict = {image['id']: cl_json_line(label_attribute, image) for image in

images}

print('Parsing annotations...')
for annotation in annotations:

image=images_dict[annotation['image_id"']]

cl_annotation = {}
cl_class_map={}

get bounding box information
cl_bounding_box={}

cl_bounding_box['left'] = annotation['bbox'][0]
cl_bounding_box['top'] = annotation['bbox'][1]

cl_bounding_box['width'] = annotation['bbox'][2]
cl_bounding_box['height'] = annotation['bbox'][3]

cl_bounding_box['class_id'] = annotation['category_id']

getattr(image, label_attribute)['annotations'].append(cl_bounding_box)

Creating datasets with images

142

Rekognition Custom Labels Guide

for category in categories:
if annotation['category_id'] == category['id']:
getattr(image, label_attribute + '-metadata')['class-map']
[category['id']]=category['name']

cl_object={}
cl_object['confidence'] = int(1) #not currently used by Custom Labels
getattr(image, label_attribute + '-metadata')['objects'].append(cl_object)

print('Done parsing annotations')

Create manifest file.
print('Writing Custom Labels manifest...')

for im in images_dict.values():

with open(local_path+cl_manifest_file, 'a+') as outfile:
json.dump(im.__dict__,outfile)
outfile.write('\n")
outfile.close()

Upload manifest file to S3 bucket.

print ('Uploading Custom Labels manifest file to S3 bucket')
print('Uploading' + local_path + cl_manifest_file + ' to ' +
s3_key_path_manifest_file)

print(s3_bucket)

s3 = boto3.resource('s3')
s3.Bucket(s3_bucket).upload_file(local_path + cl_manifest_file,
s3_key_path_manifest_file + cl_manifest_file)

Print S3 URL to manifest file,

print ('S3 URL Path to manifest file. ')

print('\033[1m s3://' + s3_bucket + '/' + s3_key_path_manifest_file +
cl_manifest_file + '\033[0Om')

Display aws s3 sync command.

print ('\nAWS CLI s3 sync command to upload your images to S3 bucket. ')
print ('\033[1m aws s3 sync ' + local_images_path + ' ' + s3_path + '\@33[0m')

3. Run the code.

Creating datasets with images 143

Rekognition Custom Labels Guide

4. In the program output, note the s3 sync command. You need it in the next step.

5. At the command prompt, run the s3 sync command. Your images are uploaded to the
S3 bucket. If the command fails during upload, run it again until your local images are
synchronized with the S3 bucket.

6. In the program output, note the S3 URL path to the manifest file. You need it in the next step.

7. Follow the instruction at Creating a dataset with a SageMaker Al Ground Truth manifest file
(Console) to create a dataset with the uploaded manifest file. For step 8, in .manifest file
location, enter the Amazon S3 URL you noted in the previous step. If you are using the AWS
SDK, do Creating a dataset with a SageMaker Al Ground Truth manifest file (SDK).

Transforming multi-label SageMaker Al Ground Truth manifest files

This topic shows you how to transform a multi-label Amazon SageMaker Al Ground Truth manifest
file to an Amazon Rekognition Custom Labels format manifest file.

SageMaker Al Ground Truth manifest files for multi-label jobs are formatted differently than
Amazon Rekognition Custom Labels format manifest files. Multi-label classification is when an
image is classified into a set of classes, but might belong to multiple classes at once. In this case,
the image can potentially have multiple labels (multi-label), such as football and ball.

For information about multi-label SageMaker Al Ground Truth jobs, see Image Classification (Multi-
label). For information about multi-label format Amazon Rekognition Custom Labels manifest files,

see the section called “Adding multiple image-level labels to an image”.

Getting the manifest file for a SageMaker Al Ground Truth job

The following procedure shows you how to get the output manifest file (output.manifest)
for an Amazon SageMaker Al Ground Truth job. You use output.manifest as input to the next
procedure.

To download a SageMaker Al Ground Truth job manifest file

Open the https://console.aws.amazon.com/sagemaker/.

1

2. In the navigation pane, choose Ground Truth and then choose Labeling Jobs.
3. Choose the labeling job that contains the manifest file that you want to use.
4

On the details page, choose the link under Output dataset location. The Amazon S3 console is
opened at the dataset location.

5. Choose Manifests, output and then output.manifest.

Creating datasets with images 144

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-image-classification-multilabel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-image-classification-multilabel.html
https://console.aws.amazon.com/sagemaker/

Rekognition Custom Labels Guide

6. Choose Object Actions and then choose Download to download the manifest file.

Transforming a multi-label SageMaker Al manifest file
The following procedure creates a multi-label format Amazon Rekognition Custom Labels manifest

file from an existing multi-label format SageMaker Al GroundTruth manifest file.

(® Note

To run the code, you need Python version 3, or higher.

To transform a multi-label SageMaker Al manifest file

1. Run the following python code. Supply the name of the manifest file that you created in
Getting the manifest file for a SageMaker Al Ground Truth job as a command line argument.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Shows how to create and Amazon Rekognition Custom Labels format
manifest file from an Amazon SageMaker Ground Truth Image
Classification (Multi-label) format manifest file.

import json

import logging

import argparse

import os.path

logger = logging.getlLogger(__name__)

def create_manifest_file(ground_truth_manifest_file):
Creates an Amazon Rekognition Custom Labels format manifest file from
an Amazon SageMaker Ground Truth Image Classification (Multi-label) format
manifest file.
:param: ground_truth_manifest_file: The name of the Ground Truth manifest file,
including the relative path.
:return: The name of the new Custom Labels manifest file.

Creating datasets with images 145

Rekognition

Custom Labels Guide

logger.info('Creating manifest file from %s', ground_truth_manifest_file)
new_manifest_file =

f'custom_labels_{os.path.basename(ground_truth_manifest_file)}'

Read the SageMaker Ground Truth manifest file into memory.
with open(ground_truth_manifest_file) as gt_file:
lines = gt_file.readlines()

#Iterate through the lines one at a time to generate the
#new lines for the Custom Labels manifest file.
with open(new_manifest_file, 'w') as the_new_file:

for line in lines:

#job_name - The of the Amazon Sagemaker Ground Truth job.
job_name = "'

Load in the old json item from the Ground Truth manifest file
old_json = json.loads(line)

Get the job name
keys = old_json.keys()
for key in keys:
if 'source-ref' not in key and '-metadata' not in key:
job_name = key

new_json = {}
Set the location of the image
new_json['source-ref'] = old_json['source-ref']

Temporarily store the list of labels
labels = old_json[job_name]

Iterate through the labels and reformat to Custom Labels format
for index, label in enumerate(labels):
new_json[f'{job_name}{index}'] = index
metadata = {}
metadatal['class-name'] = old_json[f'{job_name}-metadata']['class-

map'][str(label)]

metadatal['confidence'] = old_json[f'{job_name}-metadata']

['confidence-map'][str(label)]

metadatal['type'] = 'groundtruth/image-classification'

metadatal['job-name'] = old_json[f'{job_name}-metadata']['job-name']

metadatal 'human-annotated'] = old_json[f'{job_name}-metadata']

["human-annotated']

metadatal['creation-date'] = old_json[f'{job_name}-metadata']

['creation-date']

Creating datasets with images

146

Rekognition Custom Labels Guide

Add the metadata to new json line

new_json[f'{job_name}{index}-metadata'] = metadata
Write the current line to the json file
the_new_file.write(json.dumps(new_json))
the_new_file.write('\n")

logger.info('Created %s', new_manifest_file)
return new_manifest_file

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"manifest_file", help="The Amazon SageMaker Ground Truth manifest file"
"that you want to use."

def main():
logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")
try:
get command line arguments
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)
args = parser.parse_args()
Create the manifest file
manifest_file = create_manifest_file(args.manifest_file)
print(f'Manifest file created: {manifest_file}')
except FileNotFoundError as err:
logger.exception('File not found: %s', err)
print(f'File not found: {err}. Check your manifest file.')
if __name__ == "__main__":
main()

2. Note the name of the new manifest file that the script displays. You use it in the next step.

3. Upload your manifest files to the Amazon S3 bucket that you want to use for storing the
manifest file.

Creating datasets with images 147

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Rekognition Custom Labels Guide

® Note

Make sure Amazon Rekognition Custom Labels has access to the Amazon S3 bucket
referenced in the source-ref field of the manifest file JSON lines. For more
information, see Accessing external Amazon S3 Buckets. If your Ground Truth job

stores images in the Amazon Rekognition Custom Labels Console Bucket, you don't
need to add permissions.

4. Follow the instructions at Creating a dataset with a SageMaker Al Ground Truth manifest file
(Console) to create a dataset with the uploaded manifest file. For step 8, in .manifest file
location, enter the Amazon S3 URL for the location of the manifest file. If you are using the
AWS SDK, do Creating a dataset with a SageMaker Al Ground Truth manifest file (SDK).

Creating a manifest file from a CSV file

This example Python script simplifies the creation of a manifest file by using a Comma Separated
Values (CSV) file to label images. You create the CSV file. The manifest file is suitable for Multi-
label image classification or Multi-label image classification. For more information, see Find
objects, scenes, and concepts.

(@ Note

This script doesn't create a manifest file suitable for finding object locations or for finding
brand locations.

A manifest file describes the images used to train a model. For example, image locations and labels
assigned to images. A manifest file is made up of one or more JSON lines. Each JSON line describes
a single image. For more information, see the section called “Importing image-level labels in
manifest files".

A CSV file represents tabular data over multiple rows in a text file. Fields on a row are separated
by commas. For more information, see comma separated values. For this script, each row in your
CSV file represents a single image and maps to a JSON Line in the manifest file. To create a CSV
file for a manifest file that supports Multi-label image classification, you add one or more image-

level labels to each row. To create a manifest file suitable for Image classification, you add a single
image-level label to each row.

Creating datasets with images 148

https://en.wikipedia.org/wiki/Comma-separated_values

Rekognition Custom Labels Guide

For example, The following CSV file describes the images in the Multi-label image classification
(Flowers) Getting started project.

camellial.jpg,camellia,with_leaves
camellia2.jpg,camellia,with_leaves
camellia3.jpg,camellia,without_leaves
helleborusl.jpg,helleborus,without_leaves,not_fully_grown
helleborus2. jpg,helleborus,with_leaves,fully_grown
helleborus3.jpg,helleborus,with_leaves, fully_grown
jonquill.jpg, jonquil,with_leaves

jonquil2.jpg, jonquil,with_leaves

jonquil3.jpg, jonquil,with_leaves

jonquil4.jpg, jonquil,without_leaves

mauve_honey_myrtlel. jpg,mauve_honey_myrtle,without_leaves
mauve_honey_myrtle2.jpg,mauve_honey_myrtle,with_leaves
mauve_honey_myrtle3. jpg,mauve_honey_myrtle,with_leaves
mediterranean_spurgel. jpg,mediterranean_spurge,with_leaves
mediterranean_spurge2.jpg,mediterranean_spurge,without_leaves

The script generates JSON Lines for each row. For example, the following is the JSON Line for the
first row (camellial. jpg,camellia,with_leaves).

{"source-ref": "s3://bucket/flowers/train/camellial.jpg","camellia": 1,"camellia-

metadata":{"confidence": 1,"job-name": "labeling-job/camellia","class-name":
"camellia", "human-annotated": "yes",'"creation-date": "2022-01-21T14:21:05","type":
"groundtruth/image-classification"}, "with_leaves": 1,"with_leaves-metadata":
{"confidence": 1,"job-name": "labeling-job/with_leaves",'"class-name":
"with_leaves", "human-annotated": "yes","creation-date": "2022-01-21T14:21:05","type":
"groundtruth/image-classification"}}

In the example CSV, the Amazon S3 path to the image is not present. If your CSV file doesn't
include the Amazon S3 path for the images, use the --s3_path command line argument to
specify the Amazon S3 path to the image.

The script records the first entry for each image in a deduplicated image CSV file. The deduplicated
image CSV file contains a single instance of each image found in the input CSV file. Further
occurrences of an image in the input CSV file are recorded in a duplicate image CSV file. If the
script finds duplicate images, review the duplicate image CSV file and update the deduplicated
image CSV file as necessary. Rerun the script with the deduplicated file. If no duplicates are found
in the input CSV file, the script deletes the deduplicated image CSV file and duplicate image
CSVfile, as they are empty.

Creating datasets with images 149

Rekognition Custom Labels Guide

In this procedure, you create the CSV file and run the Python script to create the manifest file.
To create a manifest file from a CSV file

1. Create a CSV file with the following fields in each row (one row per image). Don't add a header
row to the CSV file.

Field 1 Field 2 Field n

The image name or the The first image level label One or more additional
Amazon S3 path theimage. for the image. image-level labels separated
For example, s3://my-b by commas. Add only if you
ucket/flowers/trai want to create a manifest
n/camellial.jpg . file that supports Multi-label
You can't have a mixture of image classification.

images with the Amazon S3
path and images without.

For example camellial. jpg,camellia,with_leaves ors3://my-bucket/flowers/
train/camellial.jpg,camellia,with_leaves

2. Save the CSV file.

3. Run the following Python script. Supply the following arguments:

« csv_file - The CSV file that you created in step 1.
« manifest_file - The name of the manifest file that you want to create.

o (Optional)--s3_path s3://path_to_folder/-The Amazon S3 path to add to the
image file names (field 1). Use --s3_path if the images in field 1 don't already contain an
S3 path.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

from datetime import datetime, timezone
import argparse

import logging

import csv

Creating datasets with images 150

Rekognition Custom Labels Guide

import os
import json

Purpose

Amazon Rekognition Custom Labels model example used in the service documentation.

Shows how to create an image-level (classification) manifest file from a CSV file.

You can specify multiple image level labels per image.

CSV file format is

image,label, label, ..

If necessary, use the bucket argument to specify the S3 bucket folder for the
images.

https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-gt-cl-
transform.html

logger = logging.getlLogger(__name__)

def check_duplicates(csv_file, deduplicated_file, duplicates_file):

Checks for duplicate images in a CSV file. If duplicate images

are found, deduplicated_file is the deduplicated CSV file - only the first

occurence of a duplicate is recorded. Other duplicates are recorded in
duplicates_file.

:param csv_file: The source CSV file.

:param deduplicated_file: The deduplicated CSV file to create. If no duplicates
are found

this file is removed.

:param duplicates_file: The duplicate images CSV file to create. If no
duplicates are found

this file is removed.

:return: True if duplicates are found, otherwise false.

logger.info("Deduplicating %s", csv_file)
duplicates_found = False

Find duplicates.

with open(csv_file, 'r', newline='"', encoding="UTF-8") as f,\
open(deduplicated_file, 'w', encoding="UTF-8") as dedup,\
open(duplicates_file, 'w', encoding="UTF-8") as duplicates:

Creating datasets with images 151

Rekognition Custom Labels Guide

reader = csv.reader(f, delimiter=',"')
dedup_writer = csv.writer(dedup)
duplicates_writer = csv.writer(duplicates)

entries = set()
for row in reader:
Skip empty lines.

if not ''.join(row).strip():
continue
key = row[0]

if key not in entries:
dedup_writer.writerow(row)
entries.add(key)

else:
duplicates_writer.writerow(row)
duplicates_found = True

if duplicates_found:
logger.info("Duplicates found check %s", duplicates_file)

else:
os.remove(duplicates_file)
os.remove(deduplicated_file)

return duplicates_found

def create_manifest_file(csv_file, manifest_file, s3_path):
Reads a CSV file and creates a Custom Labels classification manifest file.
:param csv_file: The source CSV file.
:param manifest_file: The name of the manifest file to create.
:param s3_path: The S3 path to the folder that contains the images.

logger.info("Processing CSV file %s", csv_file)

1
S

image_count
label_count

1
S

with open(csv_file, newline='', encoding="UTF-8") as csvfile,\
open(manifest_file, "w", encoding="UTF-8") as output_file:

image_classifications = csv.readex(

Creating datasets with images 152

Rekognition Custom Labels Guide

csvfile, delimiter=',', quotechar='|")

Process each row (image) in CSV file.
for row in image_classifications:
source_ref = str(s3_path)+row[0]

image_count += 1

Create JSON for image source ref.
json_line = {}
json_line['source-ref'] = source_ref

Process each image level label.
for index in range(l, len(row)):
image_level_label = row[index]

Skip empty columns.

if image_level_label == '':
continue

label_count += 1

Create the JSON line metadata.

json_line[image_level_label] =1

metadata = {}

metadata['confidence'] =1

metadatal['job-name'] = 'labeling-job/' + image_level_label
metadatal['class-name'] = image_level_label

metadatal 'human-annotated'] = "yes"

metadata['creation-date'] = \

datetime.now(timezone.utc).strftime('%Y-%m-%dT%H:%M:%S.%f"')

metadatal['type'] = "groundtruth/image-classification"

json_line[f'{image_level_label}-metadata'] = metadata
Write the image JSON Line.
output_file.write(json.dumps(json_line))
output_file.write('\n')
output_file.close()
logger.info("Finished creating manifest file %s\nImages: %s\nLabels: %s",

manifest_file, image_count, label_count)

return image_count, label_count

Creating datasets with images 153

Rekognition Custom Labels Guide

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"csv_file", help="The CSV file that you want to process."

parser.add_argument(
"--s3_path", help="The S3 bucket and folder path for the images."
" If not supplied, column 1 is assumed to include the S3 path.",
required=False

)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get command line arguments

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

s3_path = args.s3_path
if s3_path is None:
s3_path = "'

Create file names.

csv_file = args.csv_file

file_name = os.path.splitext(csv_file)[0]
manifest_file = f'{file_name}.manifest'
duplicates_file = f'{file_name}-duplicates.csv'
deduplicated_file = f'{file_name}-deduplicated.csv'

Create manifest file, if there are no duplicate images.
if check_duplicates(csv_file, deduplicated_file, duplicates_file):
print(f"Duplicates found. Use {duplicates_file} to view duplicates "

Creating datasets with images 154

Rekognition Custom Labels Guide

f"and then update {deduplicated_file}. ")
print(f"{deduplicated_file} contains the first occurence of a

duplicate.
"Update as necessary with the correct label information.")
print(f"Re-run the script with {deduplicated_file}")
else:
print("No duplicates found. Creating manifest file.")

image_count, label_count = create_manifest_file(csv_file,
manifest_file,
s3_path)

print(f"Finished creating manifest file: {manifest_file} \n"
f"Images: {image_count}\nLabels: {label_count}")

except FileNotFoundError as err:
logger.exception("File not found: %s", err)
print(f"File not found: {err}. Check your input CSV file.")

if __name__ == "__main__":
main()

4. If you plan to use a test dataset, repeat steps 1-3 to create a manifest file for your test
dataset.

5. If necessary, copy the images to the Amazon S3 bucket path that you specified in column 1 of
the CSV file (or specified in the --s3_path command line). You can use the following AWS S3
command.

aws s3 cp --recursive your-local-folder s3://your-target-S3-location

6. Upload your manifest files to the Amazon S3 bucket that you want to use for storing the
manifest file.

(® Note

Make sure Amazon Rekognition Custom Labels has access to the Amazon S3 bucket
referenced in the source-ref field of the manifest file JSON lines. For more
information, see Accessing external Amazon S3 Buckets. If your Ground Truth job

Creating datasets with images 155

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Rekognition Custom Labels Guide

stores images in the Amazon Rekognition Custom Labels Console Bucket, you don't
need to add permissions.

7. Follow the instructions at Creating a dataset with a SageMaker Al Ground Truth manifest file

(Console) to create a dataset with the uploaded manifest file. For step 8, in .manifest file
location, enter the Amazon S3 URL for the location of the manifest file. If you are using the
AWS SDK, do Creating a dataset with a SageMaker Al Ground Truth manifest file (SDK).

Copying content from an existing dataset

If you've previously created a dataset, you can copy its contents to a new dataset. To create a
dataset from an existing dataset with the AWS SDK, see Creating a dataset using an existing
dataset (SDK).

To create a dataset using an existing Amazon Rekognition Custom Labels dataset (console)

—

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.

In the left navigation pane, choose Projects.

ik W

In the Projects page, choose the project to which you want to add a dataset. The details page
for your project is displayed.

o

Choose Create dataset. The Create dataset page is shown.

7. In Starting configuration, choose either Start with a single dataset or Start with a training
dataset. To create a higher quality model, we recommend starting with separate training and
test datasets.

Single dataset
a. In the Training dataset details section, choose Copy an existing Amazon Rekognition

Custom Labels dataset.

b. In the Training dataset details section, in the Dataset edit box, type or select the name
of the dataset that you want to copy.

c. Choose Create Dataset. The datasets page for your project opens.

Creating datasets with images 156

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

Separate training and test datasets

a. In the Training dataset details section, choose Copy an existing Amazon Rekognition
Custom Labels dataset.

b. In the Training dataset details section, in the Dataset edit box, type or select the name
of the dataset that you want to copy.

c. In the Test dataset details section, choose Copy an existing Amazon Rekognition
Custom Labels dataset.

d. In the Test dataset details section, in the Dataset edit box, type or select the name of
the dataset that you want to copy.

® Note

Your training and test datasets can have different image sources.

e. Choose Create Datasets. The datasets page for your project opens.

8. If you need to add or change labels, do Labeling images.

9. Follow the steps in Training a model (Console) to train your model.

Labeling images

A label identifies an object, scene, concept, or bounding box around an object in an image. For
example, if your dataset contains images of dogs, you might add labels for breeds of dogs.

After importing your images into a dataset, you might need to add labels to images or correct
mislabeled images. For example, images aren't labeled if they are imported from a local computer.
You use the dataset gallery to add new labels to the dataset and assign labels and bounding boxes
to images in the dataset.

How you label the images in your datasets determines the type of model that Amazon Rekognition
Custom Labels trains. For more information, see Purposing datasets.

Topics

« Managing labels

« Assigning image-level labels to an image

Labeling images 157

Rekognition Custom Labels Guide

« Labeling objects with bounding boxes

Managing labels

You can manage labels by using the Amazon Rekognition Custom Labels console. There isn't a
specific APl for managing labels - labels are added to the dataset when you create the dataset with
CreateDataset or when you add more images to the dataset with UpdateDatasetEntries.

Topics
» Managing labels (Console)

« Managing Labels (SDK)

Managing labels (Console)

You can use the Amazon Rekognition Custom Labels console to add, change, or remove labels from
a dataset. To add a label to a dataset, you can add a new label that you create or import labels
from an existing dataset in Rekognition.

Topics

o Add new labels (Console)

« Change and remove labels (Console)

Add new labels (Console)
You can specify new labels that you want to add to your dataset.

Add labels using the editing window
To add a new label (console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.

In the left navigation pane, choose Projects.

i ok W

In the Projects page, choose the project that you want to use. The details page for your project
is displayed.

Labeling images 158

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

6.

S.

10.
11.
12.

If you want to add labels to your training dataset, choose the Training tab. Otherwise choose
the Test tab to add labels to the test dataset.

Choose Start labeling to enter labeling mode.

In the Labels section of the dataset gallery, choose Manage labels to open the Manage labels
dialog box.

In the edit box, enter a new label name.
Choose Add label.
Repeat steps 9 and 10 until you have created all the labels you need.

Choose Save to save the labels that you added.

Change and remove labels (Console)

You can rename or remove labels after adding them to a dataset. You can only remove labels that
are not assigned to any images.

To rename or remove an existing label (console)

1.

ok W

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.
In the left navigation pane, choose Projects.

In the Projects page, choose the project that you want to use. The details page for your project
is displayed.

If you want to change or delete labels in your training dataset, choose the Training tab.
Otherwise choose the Test tab to change or delete labels to the test dataset.

Choose Start labeling to enter labeling mode.

In the Labels section of the dataset gallery, choose Manage labels to open the Manage labels
dialog box.

Choose the label that you want to edit or delete.

Labeling images 159

https://console.aws.amazon.com/rekognition/

Rekognition

Custom Labels Guide

Manage labels X

Labels are the objects, scenes, or concepts that your model is trained to identify in your
images.

_ Add label \

The label name can't be more than 100 characters. Each

label must be assigned to at least one image.

Cancel

If you choose the delete icon (X), the label is removed from the list.

If you want to change the label, choose the edit icon (pencil and paper pad) and enter a
new label name in the edit box.

10. Choose Save to save your changes.

Managing Labels (SDK)

There isn't a unique API that manages dataset labels. If you create a dataset with CreateDataset,
the labels found in the manifest file or copied dataset, create the initial set of labels. If you add
more images with the UpdateDatasetEntries API, new labels found in the entries are added to
the dataset. For more information, see Adding more images (SDK). To delete labels from a dataset,
you must remove all label annotations in the dataset.

To delete labels from a dataset

1. Call ListDatasetEntries to get the dataset entries. For example code, see Listing dataset
entries (SDK).

2. In the file, remove any label annotations. For more information, see Importing image-level
labels in manifest files and the section called “Object localization in manifest files".

Labeling images 160

Rekognition Custom Labels Guide

3. Use the file to update the dataset with the UpdateDatasetEntries API. For more
information, see Adding more images (SDK).

Assigning image-level labels to an image

You use image-level labels to train models that classify images into categories. An image-level
label indicates that an image contains an object, scene or concept. For example, the following
image shows a river. If your model classifies images as containing rivers, you would add a river

image-level label. For more information, see Purposing datasets.

—
el
W— e

A dataset that contains image-level labels, needs at least two labels defined. Each image needs at
least one assigned label that identifies the object, scene, or concept in the image.

To assign image-level labels to an image (console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Choose Use Custom Labels.

Labeling images 161

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

10.
11.

12.
13.
14.

Choose Get started.
In the left navigation pane, choose Projects.

In the Projects page, choose the project that you want to use. The details page for your project
is displayed.
In the left navigation pane, choose Dataset.

If you want to add labels to your training dataset, choose the Training tab. Otherwise choose
the Test tab to add labels to the test dataset.

Choose Start labeling to enter labeling mode.

In the image gallery, select one or more images that you want to add labels to. You can only
select images on a single page at a time. To select a contiguous range of images on a page:

a. Select the first image in the range.
b. Press and hold the shift key.

c. Select the last image range. The images between the first and second image are also
selected.

d. Release the shift key.
Choose Assign image-level labels.

In the Assign image-level label to selected images dialog box, select a label that you want to
assign to the image or images.

Choose Assign to assign label to the image.
Repeat labeling until every image is annotated with the required labels.

Choose Save changes to save your changes.

Assign image-level labels (SDK)

You can use the UpdateDatasetEntries API to add or update the image-level labels that are
assigned to an image. UpdateDatasetEntries takes one or more JSON lines. Each JSON Line

represents a single image. For an image with an image-level label, the JSON Line looks similar to

the following.

{"source-ref":"s3://custom-labels-console-us-east-1-nnnnnnnnnn/gt-job/
manifest/IMG_1133.png", "TestCLConsoleBucket":0,"TestCLConsoleBucket-metadata":
{"confidence":0.95, "job-name":"labeling-job/testclconsolebucket","class-name":"Echo

Dot", "human-annotated":"yes", "creation-

date":"2020-04-15T20:17:23.433061", "type":"groundtruth/image-classification"}}

Labeling images 162

Rekognition Custom Labels Guide

The source-ref field indicates the location of the image. The JSON line also includes the image-
level labels assigned to the image. For more information, see the section called “Importing image-

level labels in manifest files”.

To assign image-level labels to an image

1. Get the get JSON Line for the existing image by using the ListDatasetEntries. For the
source-ref field, specify the location of the image that you want to assign the label to. For
more information, see Listing dataset entries (SDK).

2. Update the JSON Line returned in the previous step using the information at Importing image-

level labels in manifest files.

3. CallUpdateDatasetEntries to update the image. For more information, see Adding more
images to a dataset.

Labeling objects with bounding boxes

If you want your model to detect the location of objects within an image, you must identify what
the object is and where it is in the image. A bounding box is a box that isolates an object in an
image. You use bounding boxes to train a model to detect different objects in the same image. You
identify the object by assigning a label to the bounding box.

® Note

If you're training a model to find objects, scenes, and concepts with image-level labels, you
don't need to do this step.

For example, if you want to train a model that detects Amazon Echo Dot devices, you draw

a bounding box around each Echo Dot in an image and assign a label named Echo Dot to the
bounding box. The following image shows a bounding box around an Echo Dot device. The image
also contains an Amazon Echo without a bounding box.

Labeling images 163

Rekognition Custom Labels Guide

Locate objects with bounding boxes (Console)

In this procedure, you use the console to draw bounding boxes around the objects in your images.
You also can identify objects within the image by assigning labels to the bounding box.

® Note

You can't use the Safari browser to add bounding boxes to images. For supported browsers,
see Setting up Amazon Rekognition Custom Labels.

Before you can add bounding boxes, you must add at least one label to the dataset. For more
information, see Add new labels (Console).

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Choose Use Custom Labels.

Labeling images 164

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

10.

11.
12.
13.

14.
15.

16.

Choose Get started.
In the left navigation pane, choose Projects.

In the Projects page, choose the project that you want to use. The details page for your project
is displayed.

On the project details page, choose Label images

If you want to add bounding boxes to your training dataset images, choose the Training tab.
Otherwise choose the Test tab to add bounding boxes to the test dataset images.

Choose Start labeling to enter labeling mode.
In the image gallery, choose the images that you want to add bounding boxes to.

Choose Draw bounding box. A series of tips are shown before the bounding box editor is
displayed.

In the Labels pane on the right, select the label that you want to assign to a bounding box.
In the drawing tool, place your pointer at the top-left area of the desired object.

Press the left mouse button and draw a box around the object. Try to draw the bounding box
as close as possible to the object.

Release the mouse button. The bounding box is highlighted.

Choose Next if you have more images to label. Otherwise, choose Done to finish labeling.

Labels X
. Echo 1
. Echo Dot 2

@xse@a+ﬁ

Delete Undo Redo Zoomin Zoomout Move Fitimage

Repeat steps 1-7 until you have created a bounding box in each image that contains objects.

Labeling images 165

Rekognition Custom Labels Guide

17. Choose Save changes to save your changes.

18. Choose Exit to exit labeling mode.

Locate objects with bounding boxes (SDK)

You can use the UpdateDatasetEntries API to add or update object location information for
an image. UpdateDatasetEntries takes one or more JSON lines. Each JSON Line represents a
single image. For object localization, a JSON Line looks similar to the following.

{"source-ref": "s3://bucket/images/IMG_1186.png", "bounding-box": {"image_size":
[{"width": 640, "height": 480, "depth": 3}], "annotations": [{ "class_id": 1,
"top": 251, "left": 399, "width": 155, "height": 101}, {"class_id": @, "top": 65,
"left": 86, "width": 220, "height": 3343}]}, "bounding-box-metadata": {"objects":
[{ "confidence": 1}, {"confidence": 1}], "class-map": {"0": "Echo", "1": "Echo Dot"},

"type": "groundtruth/object-detection", "human-annotated": "yes", '"creation-date":

"2013-11-18T02:53:27", "job-name": "my job"}}

The source-ref field indicates the location of the image. The JSON line also includes labeled
bounding boxes for each object on the image. For more information, see the section called "Object

localization in manifest files”.

To assign bounding boxes to an image

1. Get the get JSON Line for the existing image by using the ListDatasetEntries. For the
source-ref field, specify the location of the image that you want to assign the image-level
label to. For more information, see Listing dataset entries (SDK).

2. Update the JSON Line returned in the previous step using the information at Object
localization in manifest files.

3. CallUpdateDatasetEntries to update the image. For more information, see Adding more
images to a dataset.

Debugging datasets

During dataset creation there are two types of error that can occur — terminal errors and non-
terminal errors. Terminal errors can stop dataset creation or update. Non-terminal errors don't stop
dataset creation or update.

Topics

Debugging datasets 166

Rekognition Custom Labels Guide

» Debugging terminal dataset errors

» Debugging non-terminal dataset errors

Debugging terminal dataset errors

There are two types of terminal errors — file errors that cause dataset creation to fail, and content
errors that Amazon Rekognition Custom Labels removes from the dataset. Dataset creation fails if
there are too many content errors.

Topics

o Terminal file errors

+ Terminal content errors

Terminal file errors

The following are file errors. You can get information about file errors by calling
DescribeDataset and checking the Status and StatusMessage fields. For example code, see
Describing a dataset (SDK).

« ERROR_MANIFEST_INACCESSIBLE_OR_UNSUPPORTED_FORMAT

« ERROR_MANIFEST_SIZE_TOO_LARGE.

« ERROR_MANIFEST_ROWS_EXCEEDS_MAXIMUM

« ERROR_INVALID_PERMISSIONS_MANIFEST_S3_BUCKET

« ERROR_TOO_MANY_RECORDS_IN_ERROR

« ERROR_MANIFEST_TOO_MANY_LABELS

 ERROR_INSUFFICIENT_IMAGES_PER_LABEL_FOR_DISTRIBUTE

ERROR_MANIFEST_INACCESSIBLE_OR_UNSUPPORTED_FORMAT
Error message
The manifest file extension or contents are invalid.

The training or testing manifest file doesn't have a file extension or its contents are invalid.

Debugging datasets 167

Rekognition Custom Labels Guide

To fix error ERROR_MANIFEST_INACCESSIBLE_OR_UNSUPPORTED_FORMAT
o Check the following possible causes in both the training and testing manifest files.

« The manifest file is missing a file extension. By convention the file extension is .manifest.

« The Amazon S3 bucket or key for the manifest file couldn't be found.

ERROR_MANIFEST_SIZE_TOO_LARGE
Error message
The manifest file size exceeds the maximum supported size.

The training or testing manifest file size (in bytes) is too large. For more information, see
Guidelines and quotas in Amazon Rekognition Custom Labels. A manifest file can have less than

the maximum number of JSON Lines and still exceed the maximum file size.

You can't use the Amazon Rekognition Custom Labels console to fix error The manifest file size
exceeds the maximum supported size.

To fix error ERROR_MANIFEST_SIZE_TOO_LARGE

1. Check which of the training and testing manifests exceed the maximum file size.

2. Reduce the number of JSON Lines in the manifest files that are too large. For more
information, see Creating a manifest file.

ERROR_MANIFEST_ROWS_EXCEEDS_MAXIMUM
Error message

The manifest file has too many rows.

More information

The number of JSON Lines (humber of images) in the manifest file is greater than the allowed limit.
The limit is different for image-level models and object location models. For more information, see
Guidelines and quotas in Amazon Rekognition Custom Labels.

JSON Line error are validated until the number of JSON Lines reaches the
ERROR_MANIFEST_ROWS_EXCEEDS_MAXIMUM limit.

Debugging datasets 168

Rekognition Custom Labels Guide

You can't use the Amazon Rekognition Custom Labels console to fix error
ERROR_MANIFEST_ROWS_EXCEEDS_MAXIMUM.

To fix ERROR_MANIFEST_ROWS_EXCEEDS_MAXIMUM

» Reduce the number of JSON Lines in the manifest. For more information, see Creating a
manifest file.

ERROR_INVALID_PERMISSIONS_MANIFEST_S3_BUCKET
Error message
The S3 bucket permissions are incorrect.

Amazon Rekognition Custom Labels doesn't have permissions to one or more of the buckets
containing the training and testing manifest files.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
To fix error ERROR_INVALID_PERMISSIONS_MANIFEST_S3_BUCKET

o Check the permissions for the bucket(s) containing the training and testing manifests. For
more information, see Step 2: Set up Amazon Rekognition Custom Labels console permissions.

ERROR_TOO_MANY_RECORDS_IN_ERROR
Error message

The manifest file has too many terminal errors.
To fix ERROR_TOO_MANY_RECORDS_IN_ERROR

o Reduce the number of JSON Lines (images) with terminal content errors. For more
information, see Terminal manifest content errors.

You can't use the Amazon Rekognition Custom Labels console to fix this error.

Debugging datasets 169

Rekognition Custom Labels Guide

ERROR_MANIFEST_TOO_MANY_LABELS
Error message

The manifest file has too many labels.
More information

The number of unique labels in the manifest (dataset) is more than the allowed limit. If the training
dataset is split to create a testing dataset, the mumber of labels is determined after the split.

To fix ERROR_MANIFEST_TOO_MANY_LABELS (Console)

« Remove labels from the dataset. For more information, see Managing labels. The labels are

automatically removed from the images and bounding boxes in your dataset.

To fix ERROR_MANIFEST_TOO_MANY_LABELS (JSON Line)

« Manifests with image level JSON Lines - If the image has a single label, remove the JSON Lines
for images that use the desired label. If the JSON Line contains multiple labels, remove only
the JSON object for the desired label. For more information, see Adding multiple image-level

labels to an image.

Manifests with object location JSON Lines — Remove the bounding box and associated label
information for the label that you want to remove. Do this for each JSON Line that contains
the desired label. You need to remove the label from the class-map array and corresponding
objects in the objects and annotations array. For more information, see Object localization

in manifest files.

ERROR_INSUFFICIENT_IMAGES_PER_LABEL_FOR_DISTRIBUTE

Error message

The manifest file doesn't have enough labeled images to distribute the dataset.

Dataset distribution occurs when Amazon Rekognition Custom Labels splits a training dataset to

create a test dataset. You can also split a dataset by calling the DistributeDatasetEntries
API.

Debugging datasets 170

Rekognition Custom Labels Guide

To fix error ERROR_MANIFEST_TOO_MANY_LABELS

o Add more labeled images to the training dataset

Terminal content errors

The following are terminal content errors. During dataset creation, images that have terminal
content errors are removed from the dataset. The dataset can still be used for training. If there

are too many content errors, dataset/update fails. Terminal content errors related to dataset
operations aren't displayed in the console or returned from DescribeDataset or other API. If you
notice that images or annotations are missing from your datasets, check your dataset manifest files
for the following issues:

The length of a JSON line is too long. The maximum length is 100,000 characters.

The source-ref value is missing from a JSON Line.

The format of a source-ref value in a JSON Line is invalid.

The contents of a JSON Line are not valid.

The value a source-ref field appears more than once. An image can only be referenced once in
a dataset.

For information about the source-ref field, see Creating a manifest file.

Debugging non-terminal dataset errors

The following are non-terminal errors that can occur during dataset creation or update. These
errors can invalidate an entire JSON Line or invalidate annotations within a JSON Line. If a JSON
Line has an error, it is not used for training. If an annotation within a JSON Line has an error, the
JSON Line is still used for training, but without the broken annotation. For more information about
JSON Lines, see Creating a manifest file.

You can access non-terminal errors from the console and by calling the ListDatasetEntries
API. For more information, see Listing dataset entries (SDK).

The following errors are are also returned during training. We recommend that you fix these errors
before training your model.For more information, see Non-Terminal JSON Line Validation Errors.

« ERROR_NO_LABEL_ATTRIBUTES

Debugging datasets 171

Rekognition Custom Labels Guide

« ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT

« ERROR_INVALID_LABEL_ATTRIBUTE_METADATA_FORMAT
« ERROR_NO_VALID_LABEL_ATTRIBUTES

« ERROR_INVALID_BOUNDING_BOX
 ERROR_INVALID_IMAGE_DIMENSION

« ERROR_BOUNDING_BOX_TOO_SMALL

« ERROR_NO_VALID_ANNOTATIONS

« ERROR_MISSING_BOUNDING_BOX_CONFIDENCE
« ERROR_MISSING_CLASS_MAP_ID

« ERROR_TOO_MANY_BOUNDING_BOXES

« ERROR_UNSUPPORTED_USE_CASE_TYPE

o ERROR_INVALID_LABEL_NAME_LENGTH

Accessing non-terminal errors

You can use the console to find out which images in a dataset have non-terminal errors. You can
also call, call ListDatasetEntries API to get the error messages. For more information, see
Listing dataset entries (SDK).

To access non-terminal errors(console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Choose Use Custom Labels.

3. Choose Get started.

4. In the left navigation pane, choose Projects.
5

In the Projects page, choose the project that you want to use. The details page for your project
is displayed.

6. If you want to view non-terminal errors in your training dataset, choose the Training tab.
Otherwise choose the Test tab to view non-terminal errors in your test dataset.

7. In the Labels section of the dataset gallery, choose Errors. The dataset gallery is filtered to
only show images with errors.

8. Choose Error underneath an image to see the error code. Use the information at Non-Terminal
JSON Line Validation Errors to fix the error.

Debugging datasets 172

https://console.aws.amazon.com/rekognition/

Rekognition

Custom Labels Guide

Labels {it label Images (13)

Q
Images (13)

Labeled (13)
test_normal_8.jpg

pot_resistor (15)

comparator {15)
ir_led (14)

ir_phototransistor (14)

Dataset record errors

To fix errors on an image, choose Start labelling button. Select the
image to reassign the labels or redraw the bounding boxes .[F)

ERROR_UNSUPPORTED_USE_CASE_TYPE
ERROR_NO_VALID_L ABEL_ATTRIBUTES

Training an Amazon Rekognition Custom Labels model

You can train a model by using the Amazon Rekognition Custom Labels console, or by the Amazon
Rekognition Custom Labels API. If model training fails, use the information in Debugging a failed

model training to find the cause of the failure.

Training a model

173

Rekognition Custom Labels Guide

® Note

You are charged for the amount of time that it takes to successfully train a model. Typically
training takes from 30 minutes to 24 hours to complete. For more information, see Training
hours.

A new version of a model is created every time the model is trained. Amazon Rekognition Custom
Labels creates a name for the model that is a combination of the project name and the timestamp
for when the model is created.

To train your model, Amazon Rekognition Custom Labels makes a copy of your source training
and test images. By default the copied images are encrypted at rest with a key that AWS owns and
manages. You can also choose to use your own AWS KMS key. If you use your own KMS key, you
need the following permissions on the KMS key.

e kms:CreateGrant

o kms:DescribeKey

For more information, see AWS Key Management Service concepts. Your source images are

unaffected.

You can use KMS server-side encryption (SSE-KMS) to encrypt the training and test images in
your Amazon S3 bucket, before they are copied by Amazon Rekognition Custom Labels. To allow
Amazon Rekognition Custom Labels access to your images, your AWS account needs the following
permissions on the KMS key.

o kms:GenerateDataKey

« kms:Decrypt

For more information, see Protecting Data Using Server-Side Encryption with KMS keys Stored in
AWS Key Management Service (SSE-KMS).

After training a model, you can evaluate its performance and make improvements. For more
information, see Improving a trained Amazon Rekognition Custom Labels model.

For other model tasks, such as tagging a model, see Managing an Amazon Rekognition Custom

Labels model.

Training a model 174

https://aws.amazon.com/rekognition/pricing/#Amazon_Rekognition_Custom_Labels_pricing
https://aws.amazon.com/rekognition/pricing/#Amazon_Rekognition_Custom_Labels_pricing
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingKMSEncryption.html

Rekognition Custom Labels Guide

Topics

« Training a model (Console)

« Training a model (SDK)

Training a model (Console)

You can use the Amazon Rekognition Custom Labels console to train a model.

Training requires a project with a training dataset and a test dataset. If your project doesn't have

a test dataset, the Amazon Rekognition Custom Labels console splits the training dataset during
training to create one for your project. The images chosen are a representative sampling and aren't
used in the training dataset. We recommend splitting your training dataset only if you don't have
an alternative test dataset that you can use. Splitting a training dataset reduces the number of
images available for training.

(® Note

You are charged for the amount of time that it takes to train a model. For more
information, see Training hours.

To train your model (console)

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
In the left navigation pane, choose Projects.

In the Projects page, choose the project that contains the model that you want to train.

i A WNd =

On the Project page, choose Train model.

Custom Labels Projects My Project-1 Dataset

Dataset Start labeling H Actions ¥

Training (61) Test (56)

v Preparing your dataset

6. (Optional) If you want to use your own AWS KMS encryption key, do the following:

Training a model (Console) 175

https://aws.amazon.com/rekognition/pricing/#Amazon_Rekognition_Custom_Labels_pricing
https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

a. InImage data encryption choose Customize encryption settings (advanced).

b. In encryption.aws_kms_key enter the Amazon Resource Name (ARN) of your key, or
choose an existing AWS KMS key. To create a new key, choose Create an AWS IMS key.

7. (Optional) if you want to add tags to your model do the following:

a. Inthe Tags section, choose Add new tag.

b. Enter the following:

i. The name of the key in Key.
ii. The value of the key in Value.
c. To add more tags, repeat steps 6a and 6b.

d. (Optional) If you want to remove a tag, choose Remove next to the tag that you want
to remove. If you are removing a previously saved tag, it is removed when you save your
changes.

8. On the Train model page, Choose Train model. The Amazon Resource Name (ARN) for your
project should be in the Choose project edit box. If not, enter the ARN for your project.

Training a model (Console) 176

Rekognition Custom Labels Guide

rain model

Training details info

Choose project
Amazon Rekognition Custom Labels trains a new version of the model within the project you choose.

| Q amawsrekognitionus-cast- I <

Tags Info
Atag is a label that you can assign to your model. Each tag consists of a key and an optional value.

No tags associated with the resource,

Add new tag

You can add up to 50 more tags.

Image Data Encryption

Your data is encrypted by default with a key that AWS owns and manages for you. To choose a different key, customize your
encryption settings. Learn More [

|| Customize encryption settings (advanced)

d Train Model

9. Inthe Do you want to train your model? dialog box, choose Train model.

Training a model (Console) 177

Rekognition

Custom Labels Guide

Do you want to train your model?

Typically, training takes from 30 minutes to 24 hours to complete. For more
information, see Training hours

You are charged for the amount of time it takes to successfully train your model and for
the amount of time your model runs. You arn't charged if model training fails.

Cancel

10. In the Models section of the project page, you can check the current status in the Model

Status column, where the training's in progress. Training a model takes a while to complete.

Custom Labels Projects

My-Project-1 i

v How it works

Creating your dataset

'E“

1. Create dataset

A dataset is a collection of images, and
image labels, that you use to train or test a

model.

@ Created

My-Project-1

B

2. Label images

locations on an image.

Label images

Labels identify objects, scenes, or concepts
on an entire image, or they identify object

Training your model

3. Train model

Depending on the training dataset, the
training model finds image-level scenes
and concepts, or it finds object
locations.

Evaluating your model

19

4. Check performance metrics
Performance metrics tell you if your
model needs additional training before
you can use it.

Project details

Project name Created Dataset Models
My-Project-1 October 04, 2021 at 13:05:06 9] 1
(UTC-07:00)
Models (1)
Q 1 >
— S Date Training Model performance Mgl . < Status
created v dataset v v (F1 score) message v
My-Project- October 04, The model is
1.2021-10-04T13.52.53 2021 NEA TRAINING_IN_PROGRESS being trained.

______/

Training a model (Console)

178

Rekognition Custom Labels Guide

11. After training completes, choose the model name. Training is finished when the model status
is TRAINING_COMPLETED. If training fails, read Debugging a failed model training.

rooms_19 Delete project
Create datasets X
To train a model, you create a training dataset and a test dataset. A dataset is a collection of images labeled with the objects or scenes that you want to find. You create a dataset to train your model first. Later, you create another
dataset to test your model.
Modets ()

~

Q =

Name v Date created Training dataset Testing dataset Maodel performance 7 Model status s Status message

rooms_19.2021-07-13T10.36.30 July 13, 2021 rooms_19_training_dataset rooms_19_test_dataset 0.502 TRAINING_COMPLETED The model is ready to run.

12. Next step: Evaluate your model. For more information, Improving a trained Amazon
Rekognition Custom Labels model.

Training a model (SDK)

You train a model by calling CreateProjectVersion. To train a model, the following information is
needed:

« Name - A unique name for the model version.
» Project ARN — The Amazon Resource Name (ARN) of the project that manages the model.

« Training results location — The Amazon S3 location where the results are placed. You can use
the same location as the console Amazon S3 bucket, or you can choose a different location. We
recommend choosing a different location because this allows you to set permissions and avoid
potential naming conflicts with training output from using the Amazon Rekognition Custom
Labels console.

Training uses the training and test datasets associated with project. For more information, see
Managing datasets.

(® Note

Optionally, you can specify training and test dataset manifest files that are external to a
project. If you open the console after training a model with external manifest files, Amazon
Rekognition Custom Labels creates the datasets for you by using the last set of manifest
files used for training. You can no longer train a model version for the project by specifying
external manifest files. For more information, see CreatePrjectVersion.

Training a model (SDK) 179

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion

Rekognition Custom Labels Guide

The response from CreateProjectVersion is an ARN that you use to identify the model
version in subsequent requests. You can also use the ARN to secure the model version. For more
information, see Securing Amazon Rekognition Custom Labels projects.

Training a model version takes a while to complete. The Python and Java examples in this

topic use waiters to wait for training to complete. A waiter is a utility method that polls

for a particular state to occur. Alternatively, you can get the current status of training by

calling DescribeProjectVersions. Training is completed when the Status field value is
TRAINING_COMPLETED. After training is completed, you can evaluate model’s quality by reviewing
the evaluation results.

Training a model (SDK)

The following example shows how to train a model by using the training and test datasets
associated with a project.

To train a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to train a project.
AWS CLI

The following example creates a model. The training dataset is split to create the testing
dataset. Replace the following:

« my_project_arn with the Amazon Resource Name (ARN) of the project.
« version_name with a unique version name of your choosing.

« output_bucket with the name of the Amazon S3 bucket where Amazon Rekognition
Custom Labels saves the training results.

« output_folder with the name of the folder where the training results are saved.

 (optional parameter) - -kms-key-id with identifier for your AWS Key Management
Service customer master key.

aws rekognition create-project-version \
--project-arn project_arn \
--version-name version_name \

Training a model (SDK) 180

Rekognition Custom Labels Guide

--output-config '{"S3Bucket":"output_bucket", "S3KeyPrefix":"output_folder"}'
\

--profile custom-labels-access

Python

The following example creates a model. Supply the following command line arguments:

» project_arn-The Amazon Resource Name (ARN) of the project.
« version_name - A unique version name for the model of your choosing.

« output_bucket - the name of the Amazon S3 bucket where Amazon Rekognition
Custom Labels saves the training results.

« output_folder - the name of the folder where the training results are saved.

Optionally, supply the folowing command line parameters to attach a tag to your model:

« tag - atag name of your choosing that you want to attach to the model.

« tag_value the tag value.

#Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/
amazon-rekognition-custom-labels-developer-guide/blob/master/LICENSE-
SAMPLECODE.)

import argparse
import logging
import json
import boto3

from botocore.exceptions import ClientError
logger = logging.getlLogger(__name__)

def train_model(rek_client, project_arn, version_name, output_bucket,
output_folder, tag_key, tag_key_value):

Trains an Amazon Rekognition Custom Labels model.

:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.

Training a model (SDK) 181

Rekognition

Custom Labels Guide

:param project_arn: The ARN of the project in which you want to train a

model.

:param version_name: A version for the model.

:param output_bucket: The S3 bucket that hosts training output.

:param output_folder: The path for the training output within output_bucket
:param tag_key: The name of a tag to attach to the model. Pass None to

exclude

:param tag_key_value: The value of the tag. Pass None to exclude

try:

#Train the model

status=""
logger.info("training model version %s for project %s",
version_name, project_arn)

output_config = json.loads(
'{"S3Bucket": "'

+ output_bucket
+ '", "S3KeyPrefix": "'
+ output_folder
+ '}
)
tags={}

if tag_key is not None and tag_key_value is not None:
tags = json.loads(
"{"'" + tag_key + '":"' + tag_key_value + '"}'

response=rek_client.create_project_version(
ProjectArn=project_azrn,
VersionName=version_name,
OutputConfig=output_config,
Tags=tags

logger.info("Started training: %s", response['ProjectVersionArn'])

Training a model (SDK)

182

Rekognition Custom Labels Guide

Wait for the project version training to complete.

project_version_training_completed_waiter =

rek_client.get_waiter('project_version_training_completed')
project_version_training_completed_waiter.wait(ProjectArn=project_azrn,
VersionNames=[version_name])

Get the completion status.

describe_response=rek_client.describe_project_versions(ProjectArn=project_arn,
VersionNames=[version_name])
for model in describe_response['ProjectVersionDescriptions']:
logger.info("Status: %s", model['Status'])
logger.info("Message: %s", model['StatusMessage'])
status=model['Status']

logger.info("finished training")
return response['ProjectVersionArn'], status

except ClientError as err:
logger.exception("Couldn't create model: %s", err.response['Error']
['Message'])
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The ARN of the project in which you want to train a
model"

)

parser.add_argument(
"version_name", help="A version name of your choosing."

parser.add_argument(

Training a model (SDK) 183

Rekognition Custom Labels Guide

"output_bucket", help="The S3 bucket that receives the training
results."”

)

parser.add_argument(
"output_folder", help="The folder in the S3 bucket where training
results are stored."

)

parser.add_argument(
"--tag_name", help="The name of a tag to attach to the model",
required=False

)

parser.add_argument(
"--tag_value", help="The value for the tag.", required=False

def main():
logging.basicConfig(level=1logging.INFO, format="%(levelname)s: %(message)s")
try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Training model version {args.version_name} for project
{args.project_arn}")

Train the model.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

model_arn, status=train_model(rekognition_client,
args.project_arn,
args.version_name,
args.output_bucket,
args.output_folder,

Training a model (SDK) 184

Rekognition Custom Labels Guide

args.tag_name,
args.tag_value)

print(f"Finished training model: {model_arn}")
print(f"Status: {status}")

except ClientError as err:
logger.exception("Problem training model: %s", err)
print(f"Problem training model: {err}")
except Exception as err:
logger.exception("Problem training model: %s
print(f"Problem training model: {err}")

, err)

if __name__ == "__main__":
main()

Java V2

The following example trains a model. Supply the following command line arguments:

project_arn - The Amazon Resource Name (ARN) of the project.
« version_name - A unique version name for the model of your choosing.

« output_bucket - the name of the Amazon S3 bucket where Amazon Rekognition
Custom Labels saves the training results.

« output_folder - the name of the folder where the training results are saved.

/~k
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.core.waiters.WaiterResponse;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

Training a model (SDK) 185

Rekognition Custom Labels Guide

import
software.amazon.awssdk.services.rekognition.model.CreateProjectVersionRequest;
import
software.amazon.awssdk.services.rekognition.model.CreateProjectVersionResponse;
import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsRequest;
import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsResponse;
import software.amazon.awssdk.services.rekognition.model.OutputConfig;
import
software.amazon.awssdk.services.rekognition.model.ProjectVersionDescription;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;
import software.amazon.awssdk.services.rekognition.waiters.RekognitionWaiter;

import java.util.Optional;
import java.util.logging.Level;
import java.util.logging.Logger;

public class TrainModel {

public static final Logger logger =
Logger.getLogger(TrainModel.class.getName());

public static String trainMyModel(RekognitionClient rekClient, String
projectArn, String versionName,
String outputBucket, String outputFolder) {

try {

OutputConfig outputConfig =
OutputConfig.builder().s3Bucket(outputBucket).s3KeyPrefix(outputFolder).build();

logger.log(Level.INFO, "Training Model for project {0}",
projectArn);

CreateProjectVersionRequest createProjectVersionRequest =
CreateProjectVersionRequest.builder()

.projectArn(projectArn).versionName(versionName).outputConfig(outputConfig).build();

CreateProjectVersionResponse response =
rekClient.createProjectVersion(createProjectVersionRequest);

logger.log(Level.INFO, "Model ARN: {@}",
response.projectVersionArn());

Training a model (SDK) 186

Rekognition Custom Labels Guide

logger.log(Level.INFO, "Training model...");
// wait until training completes

DescribeProjectVersionsRequest describeProjectVersionsRequest =
DescribeProjectVersionsRequest.builder()
.versionNames(versionName)
.projectArn(projectArn)
.build();

RekognitionWaiter waiter = rekClient.waiter();

WaiterResponse<DescribeProjectVersionsResponse> waiterResponse =
waiter

.waitUntilProjectVersionTrainingCompleted(describeProjectVersionsRequest);

Optional<DescribeProjectVersionsResponse> optionalResponse =
waiterResponse.matched().response();

DescribeProjectVersionsResponse describeProjectVersionsResponse =
optionalResponse.get();

for (ProjectVersionDescription projectVersionDescription
describeProjectVersionsResponse
.projectVersionDescriptions()) {

System.out.println("ARN: " +
projectVersionDescription.projectVersionArn());

System.out.println("Status: " +
projectVersionDescription.statusAsString());

System.out.println("Message: " +
projectVersionDescription.statusMessage());

}
return response.projectVersionArn();

} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not train model: {@}",
e.getMessage());
throw e;

Training a model (SDK) 187

Rekognition Custom Labels Guide

public static void main(String args[]) {

String versionName = null;
String projectArn = null;

String projectVersionArn = null;
String bucket = null;

String location = null;

final String USAGE = "\n" + "Usage: " + '"<project_name> <version_name>

<output_bucket> <output_folder>\n\n" + "Where:\n"

+ " project_arn - The ARN of the project that you want to use.
\n\n"

" version_name - A version name for the model.\n\n"

+ " output_bucket - The S3 bucket in which to place the
training output. \n\n"

+ " output_folder - The folder within the bucket that the

training output is stored in. \n\n";

if (args.length != 4) {
System.out.println(USAGE);
System.exit(1l);

projectArn = args[0];
versionName = args[1];
bucket = args[2];
location = args[3];

try {

// Get the Rekognition client.

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Train model
projectVersionArn = trainMyModel(rekClient, projectArn, versionName,
bucket, location);

System.out.println(String.format("Created model: %s for Project ARN:
, projectVersionArn, projectArn));

o
%S

Training a model (SDK) 188

Rekognition Custom Labels Guide

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);

3. If training fails, read Debugging a failed model training.

Debugging a failed model training

You might encounter errors during model training. Amazon Rekognition Custom Labels reports
training errors in the console and in the response from DescribeProjectVersions.

Errors are either terminal (training can't continue), or they are non-terminal (training can continue).
For errors that relate to the contents of the training and testing datasets, you can download the
validation results (@ manifest summary and training and testing validation manifests). Use the

error codes in the validation results to find further information in this section. This section also
provides information for manifest file errors (terminal errors that happen before the manifest file
contents are validated).

(@ Note

A manifest is the file used to store the contents of a dataset.

You can fix some errors by using the Amazon Rekognition Custom Labels console. Other errors
might require you to make updates to the training or testing manifest files. You might need to
make other changes, such as IAM permissions. For more information, see the documentation for
individual errors.

Debugging model training 189

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

Terminal errors

Terminal errors stop the training of a model. There are 3 categories of terminal training errors —
service errors, manifest file errors, and manifest content errors.

In the console, Amazon Rekognition Custom Labels shows terminal errors for a model in the Status
message column of the projects page. The project management dashboard showing list of projects
with name, versions, date created, model performance, and status message indicating model state
such as training completed or failed

Projects (853) Info Train new model ‘ m
Q < 1 2 3 4 5 6 7 8 . >
. Date Model
Name Versions Model status Status message
created performance
2020-10-05 TRAINING_COMPLETED The model is ready to run.
(o] 19 2020-09-29

test_4 2020-09-30 0.261 STOPPED The model has stopped running.

2020-10-05 Amazon Rekognition experienced a service issue.

If you using the AWS SDK, you can find out if a terminal manifest file error or a terminal manifest
content error has occured by checking the response from DescribeProjectVersions. In this case, the
Status value is TRAINING_FAILED and StatusMessage field contains the error.

Service errors

Terminal service errors occur when Amazon Rekognition experiences a service issue and can't
continue training. For example, the failure of another service that Amazon Rekognition Custom
Labels depends upon. Amazon Rekognition Custom Labels reports service errors in the console as
Amazon Rekognition experienced a service issue. If you use the AWS SDK, service errors that occur
during training are raised as an InternalServerError exception by CreateProjectVersion and

DescribeProjectVersions.

If a service error occurs, retry training of the model. If training continues to fail, contact AWS
Support and include any error information reported with the service error.

List of terminal manifest file errors

Manifest file errors are terminal errors, in the training and testing datasets, that happen at the file
level, or across multiple files. Manifest file errors are detected before the contents of the training
and testing datasets are validated. Manifest file errors prevent the reporting of non-terminal
validation errors. For example, an empty training manifest file generates an The manifest file is

Terminal errors 190

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/premiumsupport/

Rekognition Custom Labels Guide

empty error. Since the file is empty, no non-terminal JSON Line validation errors can be reported.
The manifest summary is also not created.

You must fix manifest file errors before you can train your model.
The following lists the manifest file errors.

The manifest file extension or contents are invalid.

The manifest file is empty.

The manifest file size exceeds the maximum supported size.

Unable to write to output S3 bucket.

The S3 bucket permissions are incorrect.

List of terminal manifest content errors

Manifest content errors are terminal errors that relate to the content within a manifest. For
example, if you get the error The manifest file contains insufficient labeled images per label to

perform auto-split, training can't finish as there aren't enough labeled images in the training

dataset to create a testing dataset.

As well as being reported in the console and in the response from DescribeProjectVersions,
the error is reported in the manifest summary along with any other terminal manifest content
errors. For more information, see Understanding the manifest summary.

Non terminal JSON Line errors are also reported in separate training and testing validation results
manifests. The non-terminal JSON Line errors found by Amazon Rekognition Custom Labels are
not necessarily related to the manifest content error(s) that stop training. For more information,
see Understanding training and testing validation result manifests.

You must fix manifest content errors before you can train your model.

The following are the error messages for manifest content errors.

The manifest file contains too many invalid rows.

The manifest file contains images from multiple S3 buckets.

Invalid owner id for images S3 bucket.

The manifest file contains insufficient labeled images per label to perform auto-split.

The manifest file has too few labels.

Terminal errors 191

Rekognition Custom Labels Guide

The manifest file has too many labels.

Less than {}% label overlap between the training and testing manifest files.

The manifest file has too few usable labels.

Less than {}% usable label overlap between the training and testing manifest files.

Failed to copy images from S3 bucket.

List of non-terminal JSON line validation errors

JSON Line validation errors are non-terminal errors that don't require Amazon Rekognition Custom
Labels to stop training a model.

JSON Line validation errors are not shown in the console.

In the training and testing datasets, a JSON Line represents the training or testing information
for a single image. Validation errors in a JSON Line, such as an invalid image, are reported in
the training and testing validation manifests. Amazon Rekognition Custom Labels completes
training using the other, valid, JSON Lines that are in the manifest. For more information, see
Understanding training and testing validation result manifests. For information about validation

rules, see Validation rules for manifest files.

® Note

Training fails if there are too many JSON Line errors.

We recommend that you also fix non-terminal JSON Line errors errors as they can potentially cause
future errors or impact your model training.

Amazon Rekognition Custom Labels can generate the following non-terminal JSON Line validation
errors.

The source-ref key is missing.

The format of the source-ref value is invalid.

No label attributes found.

The format of the label attribute {} is invalid.

The format of the label attributemetadata is invalid.

List of non-terminal JSON line validation errors 192

Rekognition Custom Labels Guide

« No valid label attributes found.

« One or more bounding boxes has a missing confidence value.

o One of more class ids is missing from the class map.

e The JSON Line has an invalid format.

« The image is invalid. Check S3 path and/or image properties.

» The bounding box has off frame values.

» The height and width of the bounding box is too small.

» There are more bounding boxes than the allowed maximum.

« No valid annotations found.

Understanding the manifest summary

The manifest summary contains the following information.

« Error information about List of terminal manifest content errors encountered during validation.

 Error location information for List of non-terminal JSON line validation errors in the training and

testing datasets.

« Error statistics such as the total number of invalid JSON Lines found in the training and testing
datasets.

The manifest summary is created during training if there are no List of terminal manifest file
errors. To get the location of the manifest summary file (manifest_summary.json), see Getting the
validation results.

(® Note

Service errors and manifest file errors are not reported in the manifest summary. For more
information, see Terminal errors.

For information about specific manifest content errors, see Terminal manifest content errors.

Manifest summary file format

A manifest file has 2 sections, statistics and errors.

Understanding the manifest summary 193

Rekognition Custom Labels Guide

statistics

statistics contains information about the errors in the training and testing datasets.

« training - statistics and errors found in the training dataset.

« testing - statistics and errors found in the testing dataset.

Objects in the errors array contain the error code and message for manifest content errors.

The error_line_indices array contains the line numbers for each JSON Line in the training or
test manifest that has an error. For more information, see Fixing training errors.

errors

Errors spanning both the training and testing dataset. For example, an
ERROR_INSUFFICIENT_USABLE_LABEL_OVERLAP occurs when there is isn't enough usable labels
that overlap the training and testing datasets.

"statistics": {
"training":
{
"use_case": String, # Possible values are IMAGE_LEVEL_LABELS,
OBJECT_LOCALIZATION and NOT_DETERMINED
"total_json_lines": Number, # Total number json lines (images) in the
training manifest.
"valid_json_lines": Number, # Total number of JSON Lines (images)
that can be used for training.
"invalid_json_lines": Number, # Total number of invalid JSON Lines.
They are not used for training.
"ignored_json_lines": Number, # JSON Lines that have a valid schema but
have no annotations. The aren't used for training and aren't counted as invalid.
"error_json_line_indices": List[int], # Contains a list of line numbers
for JSON line errors in the training dataset.
"errors": [
{
"code": String, # Error code for a training manifest content
error.
"message": String # Description for a training manifest content
error.

Understanding the manifest summary 194

Rekognition Custom Labels Guide

1,
"testing":
{
"use_case": String, # Possible values are IMAGE_LEVEL_LABELS,
OBJECT_LOCALIZATION and NOT_DETERMINED
"total_json_lines": Number, # Total number json lines (images) in the
manifest.
"valid_json_lines": Number, # Total number of JSON Lines (images) that
can be used for testing.
"invalid_json_lines": Number, # Total number of invalid JSON Lines.
They are not used for testing.
"ignored_json_lines": Number, # JSON Lines that have a valid schema but
have no annotations. They aren't used for testing and aren't counted as invalid.
"error_json_line_indices": List[int], # contains a list of error record
line numbers in testing dataset.
"errors": [

{
"code": String, # # Error code for a testing manifest content
error.
"message'": String # Description for a testing manifest content
error.
}
]
}
},
"errors": [

{

"code": String, # # Error code for errors that span the training and
testing datasets.
"message": String # Description of the error.

Example manifest summary

The following example is a partial manifest summary that shows a terminal manifest content
error (ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST). The error_json_line_indices
array contains the line numbers of non-terminal JSON Line errors in the corresponding training or

testing validation manifest.

"errors": [],

Understanding the manifest summary 195

Rekognition

Custom Labels Guide

"statistics": {
"training": {

"use_case": "NOT_DETERMINED",

"total_json_lines": 301,
"valid_json_lines": 146,
"invalid_json_lines": 155,
"ignored_json_lines": 0O,
"errors": [

{

"code": "ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST",
"message": "The manifest file contains too many invalid rows."

1,
"error_json_line_indices":

15,

16,

17,

22,

23,

24,

300

iy
"testing": {

"use_case": "NOT_DETERMINED",

"total_json_lines": 15,
"valid_json_lines": 13,
"invalid_json_lines": 2,
"ignored_json_lines": 0,
"errors": [],
"error_json_line_indices":

13,

15

L

L

Understanding the manifest summary

196

Rekognition Custom Labels Guide

Understanding training and testing validation result manifests

During training, Amazon Rekognition Custom Labels creates validation result manifests to hold
non-terminal JSON Line errors. The validation results manifests are copies of the training and
testing datasets with error information added. You can access the validation manifests after
training completes. For more information, see Getting the validation results. Amazon Rekognition
Custom Labels also creates a manifest summary that includes overview information for JSON
Line errors, such as error locations and JSON Line error counts. For more information, see

Understanding the manifest summary.

® Note

Validation results (Training and Testing Validation Result Manifests and Manifest Summary)
are only created if there are no List of terminal manifest file errors.

A manifest contains JSON Lines for each image in the dataset. Within the validation results
manifests, JSON Line error information is added to the JSON Lines where errors occur.

A JSON Line error is a non-terminal error related to a single image. A non-terminal validation
error can invalidate the entire JSON Line or just a portion. For example, if the image referenced in
a JSON Line is not in PNG or JPG format, an ERROR_INVALID_IMAGE error occurs and the entire
JSON Line is excluded from training. Training continues with other valid JSON Lines.

Within a JSON Line, an error might mean the JSON Line can stil be used for training. For example,
if the left value for one of four bounding boxes associated with a label is negative, the model is
still trained using the other valid bounding boxes. JSON Line error information is returned for the
invalid bounding box (ERROR_INVALID_BOUNDING_BOX). In this example, the error information is
added to the annotation object where the error occurs.

Warning errors, such as WARNING_NO_ANNOTATIONS, aren't used for training and count as
ignored JSON lines (ignored_json_lines) in the manifest summary. For more information, see
Understanding the manifest summary. Additionally, ignored JSON Lines don't count towards the
20% error threshold for training and testing.

For information about specific non-terminal data validation errors, see Non-Terminal JSON Line
Validation Errors.

Understanding training and testing validation result manifests 197

Rekognition Custom Labels Guide

® Note

If there are too many data validation errors, training is stopped and a
ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST terminal error is reported in the
manifest summary.

For information about correcting JSON Line errors, see Fixing training errors.

JSON line error format

Amazon Rekognition Custom Labels adds non-terminal validation error information to image level
and object localization format JSON Lines. For more information, see the section called “Creating a
manifest file".

Image Level Errors

The following example shows the Exrror arrays in an image level JSON Line. There are two sets
of errors. Errors related to label attribute metadata (in this example, sport-metadata) and errors
related to the image. An error includes an error code (code), error message (message). For more
information, see Importing image-level labels in manifest files.

"source-ref": String,
"sport": Number,
"sport-metadata": {
"class-name": String,
"confidence": Float,
"type": String,
"job-name": String,
"human-annotated": String,
"creation-date": String,
"errors": [
{
"code": String, # error codes for label
"message": String # Description and additional contextual details of
the error

iy

"errors": [

Understanding training and testing validation result manifests 198

Rekognition Custom Labels Guide

"code": String, # error codes for image
"message": String # Description and additional contextual details of the
error

Object localization errors

The following example show the error arrays in an object localization JSON Line. The JSON Line
contains an Errors array information for fields in the following JSON Line sections. Each Error
object includes the error code and the error message.

« label attribute - Errors for the label attribute fields. See bounding-box in the example.

« annotations — Annotation errors (bounding boxes) are stored in the annotations array inside
the label attribute.

« label attribute-metadata — Errors for the label attribute metadata. See bounding-box-
metadata in the example.

« image - Errors not related to the label attribute, annotation, and label attribute metadata fields.

For more information, see Object localization in manifest files.

"source-ref": String,
"bounding-box": {
"image_size": [

{
"width": Int,
"height": Int,
"depth":Int,
}
1,
"annotations": [
{
"class_id": Int,
"left": Int,
"top": Int,
"width": Int,

"height": Int,
"errors": [# annotation field errors

Understanding training and testing validation result manifests 199

Rekognition Custom Labels Guide

"code": String, # annotation field error code

"message": String # Description and additional contextual
details of the error

}
]
}
1,
"errors": [#label attribute field errors
{
"code": String, # error code
"message": String # Description and additional contextual details of
the error
}
]
1,
"bounding-box-metadata": {
"objects": [
{
"confidence": Float
}
1,
"class-map": {
String: String
1,
"type": String,
"human-annotated": String,
"creation-date": String,
"job-name": String,
"errors": [#metadata field errors
{
"code": String, # error code
"message": String # Description and additional contextual details of
the error
}
]
1,
"errors": [# image errors
{
"code": String, # error code
"message": String # Description and additional contextual details of the
error
}
]

Understanding training and testing validation result manifests 200

Rekognition Custom Labels Guide

}

Example JSON line error

The following object localization JSON Line (formatted for readability) shows an
ERROR_BOUNDING_BOX_TOO_SMALL error. In this example, the bounding box dimensions (height
and width) aren't greater than 1 x 1.

{
"source-ref": "s3://bucket/Manifests/images/199940-1791.jpg",
"bounding-box": {
"image_size": [
{
"width": 3000,
"height": 3000,
"depth": 3
}
1,
"annotations": [
{
"class_id": 1,
"top": 0O,
"left": 0,
"width": 1,
"height": 1,
"errors": [
{
"code": "ERROR_BOUNDING_BOX_TOO_SMALL",
"message": "The height and width of the bounding box is too
small."
}
]
},
{
"class_id": 0,
"top": 65,
"left": 86,
"width": 220,
"height": 334
}
]

iy

"bounding-box-metadata": {

Understanding training and testing validation result manifests 201

Rekognition Custom Labels Guide

"objects": [
{

"confidence": 1

iy
{

"confidence": 1

15

"class-map": {
Il@ll: "EChO"’
"1": "Echo Dot"

1,

"type": "groundtruth/object-detection",
"human-annotated": "yes",

"creation-date": "2019-11-20T02:57:28.288286",
"job-name": "my job"

Getting the validation results

The validation results contain error information for List of terminal manifest content errors and List
of non-terminal JSON line validation errors. There are three validation results files.

« training_manifest_with_validation.json — A copy of the training dataset manifest file with JSON
Line error information added.

« testing_manifest_with_validation.json — A copy of the testing dataset manifest file with JSON
Line error error information added.

« manifest_summary.json — A summary of manifest content errors and JSON Line errors found
in the training and testing datasets. For more information, see Understanding the manifest

summary.

For information about the contents of the training and testing validation manifests, see Debugging
a failed model training.

(® Note

« The validation results are created only if no List of terminal manifest file errors are

generated during training.

Getting the validation results 202

Rekognition Custom Labels Guide

« If a service error occurs after the training and testing manifest are validated, the
validation results are created, but the response from DescribeProjectVersions doesn't

include the validation results file locations.

After training completes or fails, you can download the validation results by using the
Amazon Rekognition Custom Labels console or get the Amazon S3 bucket location by calling
DescribeProjectVersions API.

Getting validation results (Console)

If you are using the console to train your model, you can download the validation results from a
project's list of models, as shown in the following diagram. The Models panel shows model training
and validation results with option to download validation results.

Models (1) Delete model Download validation results &
Manifest Summary
Q
Training validation
" Testing validation
e Date Training Test Model performance Madilstaonn E -
created v dataset v dataset ¥ (F1 score)

You can also access download the validation results from a model's details page. The details page
shows the dataset details with status, training and test datasets, and download links for manifest
summary, training validation manifest, and testing validation manifest.

Details
Date created Status Training dataset Test dataset
October 04, 2021 © TRAINING_COMPLETED Dataset Dataset

anifest Summary info Training validation manifest info Testing validation manifeS®™ynfo
Download [Download M Download

For more information, see Training a model (Console).

Getting validation results (SDK)

After model training completes, Amazon Rekognition Custom Labels stores the validation results in
the Amazon S3 bucket specified during training. You can get the S3 bucket location by calling the
DescribeProjectVersions API, after training completes. To train a model, see Training a model (SDK).

Getting the validation results 203

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

A ValidationData object is returned for the training dataset (TrainingDataResult) and the testing
dataset (TestingDataResult). The manifest summary is returned in ManifestSummary.

After you get the Amazon S3 bucket location, you can download the validation results. For more
information, see How do | download an object from an S3 bucket?. You can also use the GetObject
operation.

To get validation data (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example to get the location of the validation results.
Python

Replace project_arn with the Amazon Resource Name (ARN) of the project that
contains the model. For more information, see Managing an Amazon Rekognition Custom

Labels project. Replace version_name with the name of the model version. For more

information, see Training a model (SDK).

import boto3

import io

from io import BytesIO
import sys

import json

def describe_model(project_arn, version_name):

client=boto3.client('rekognition')

response=client.describe_project_versions(ProjectArn=project_arn,
VersionNames=[version_name])

for model in response['ProjectVersionDescriptions']:
print(json.dumps(model, indent=4,default=str))

def main():

project_arn='project_arn'
version_name="'version_name'

Getting the validation results 204

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ValidationData
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_TrainingDataResult
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_TestingDataResult
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/download-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/GettingObjectsUsingAPIs.html

Rekognition Custom Labels Guide

describe_model(project_arn, version_name)

if __name__ == "__main__":
main()

3. Inthe program output, note the Validation field within the TestingDataResult and
TrainingDataResult objects. The manifest summary is in ManifestSummary.

Fixing training errors

You use the manifest summary to identify List of terminal manifest content errors and List of non-

terminal JSON line validation errors encountered during training. You must fix manifest content

errors. We recommend that you also fix non-terminal JSON Line errors. For information about
specific errors, see Non-Terminal JSON Line Validation Errors and Terminal manifest content errors.

You can makes fixes to the training or testing dataset used for training. Alternatively, you can make
the fixes in the training and testing validation manifest files and use them to train the model.

After you make your fixes, you need to import the updated manifests(s) and retrain the model. For
more information, see Creating a manifest file.

The following procedure shows you how to use the manifest summary to fix terminal manifest
content errors. The procedure also shows you how to locate and fix JSON Line errors in the training
and testing validation manifests.

To fix Amazon Rekognition Custom Labels training errors

1. Download the validation results files. The file names are
training_manifest_with_validation.json, testing_manifest_with_validation.json and
manifest_summary.json. For more information, see Getting the validation results.

2. Open the manifest summary file (manifest_summary.json).

3. Fix any errors in the manifest summary. For more information, see Understanding the manifest
summary.

4. In the manifest summary, iterate through the error_line_indices array in training
and fix the errors in training_manifest_with_validation. json at the corresponding
JSON Line numbers. For more information, see the section called “Understanding training and

testing validation result manifests”.

Fixing training errors 205

Rekognition Custom Labels Guide

5. Iterate through the error_line_indices array in testing and fix the errors in
testing_manifest_with_validation. json at the corresponding JSON Line numbers.

6. Retrain the model using the validation manifest files as the training and testing datasets. For
more information, see the section called “Training a model".

If you are using the AWS SDK and choose to fix the errors in the training or the test validation

data manifest files, use the location of the validation data manifest files in the TrainingData and
TestingData input parameters to CreateProjectVersion. For more information, see Training a model
(SDK).

JSON line error precedence

The following JSON Line errors are detected first. If any of these errors occur, validation of JSON
Line errors is stopped. You must fix these errors before you can fix any of the other JSON Line
errors

« MISSING_SOURCE_REF

« ERROR_INVALID_SOURCE_REF_FORMAT

« ERROR_NO_LABEL_ATTRIBUTES
 ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT

« ERROR_INVALID_LABEL_ATTRIBUTE_METADATA_FORMAT
« ERROR_MISSING_BOUNDING_BOX_CONFIDENCE

« ERROR_MISSING_CLASS_MAP_ID

« ERROR_INVALID_JSON_LINE

Terminal manifest file errors

This topic describes the List of terminal manifest file errors. Manifest file errors do not have an

associated error code. The validation results manifests are not created when a terminal manifest
file error occurs. For more information, see Understanding the manifest summary. Terminal

manifest errors prevent the reporting of Non-Terminal JSON Line Validation Errors.

The manifest file extension or contents are invalid.

The training or testing manifest file doesn't have a file extension or its contents are invalid.

Terminal manifest file errors 206

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_TrainingData
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_TestingData
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion

Rekognition Custom Labels Guide

To fix error The manifest file extension or contents are invalid.
o Check the following possible causes in both the training and testing manifest files.

« The manifest file is missing a file extension. By convention the file extension is .manifest.

« The Amazon S3 bucket or key for the manifest file couldn't be found.

The manifest file is empty.

The training or testing manifest file used for training exists, but it is empty. The manifest file needs
a JSON Line for each image that you use for training and testing.

To fix error The manifest file is empty.

1. Check which of the training or testing manifests are empty.

2. Add JSON Lines to the empty manifest file. For more information, see Creating a manifest file.
Alternatively, create a new dataset with the console. For more information, see the section

called “"Creating datasets with images”.

The manifest file size exceeds the maximum supported size.

The training or testing manifest file size (in bytes) is too large. For more information, see
Guidelines and quotas in Amazon Rekognition Custom Labels. A manifest file can have less than

the maximum number of JSON Lines and still exceed the maximum file size.

You can't use the Amazon Rekognition Custom Labels console to fix error The manifest file size
exceeds the maximum supported size.

To fix error The manifest file size exceeds the maximum supported size.

1. Check which of the training and testing manifests exceed the maximum file size.

2. Reduce the number of JSON Lines in the manifest files that are too large. For more
information, see Creating a manifest file.

Terminal manifest file errors 207

Rekognition Custom Labels Guide

The S3 bucket permissions are incorrect.

Amazon Rekognition Custom Labels doesn't have permissions to one or more of the buckets
containing the training and testing manifest files.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
To fix error The S3 bucket permissions are incorrect.

o Check the permissions for the bucket(s) containing the training and testing manifests. For
more information, see Step 2: Set up Amazon Rekognition Custom Labels console permissions.

Unable to write to output S3 bucket.

The service is unable to generate the training output files.
To fix error Unable to write to output S3 bucket.

o Check that the Amazon S3 bucket information in the OutputConfig input parameter to

CreateProjectVersion is correct.

You can't use the Amazon Rekognition Custom Labels console to fix this error.

Terminal manifest content errors

This topic describes the List of terminal manifest content errors reported in the manifest summary.

The manifest summary includes an error code and message for each detected error. For more
information, see Understanding the manifest summary. Terminal manifest content errors don't

stop the reporting of List of non-terminal JSON line validation errors.

ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST

Error message
The manifest file contains too many invalid rows.
More information

An ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST error occurs if there are too many JSON
Lines that contain invalid content.

Terminal manifest content errors 208

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_OutputConfig
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion

Rekognition Custom Labels Guide

You can't use the Amazon Rekognition Custom Labels console to fix an
ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST error.

To fix ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST

1. Check the manifest for JSON Line errors. For more information, see Understanding training
and testing validation result manifests.

2. Fix JSON Lines that have errors For more information, see Non-Terminal JSON Line Validation
Errors.

ERROR_IMAGES_IN_MULTIPLE_S3_BUCKETS

Error message

The manifest file contains images from multiple S3 buckets.
More information

A manifest can only reference images stored in a single bucket. Each JSON Line stores the Amazon
S3 location of an image location in the value of source-ref. In the following example, the bucket
name is my-bucket.

"source-ref": "s3://my-bucket/images/sunrise.png"

You can't use the Amazon Rekognition Custom Labels console to fix this error.
To fix ERROR_IMAGES_IN_MULTIPLE_S3_BUCKETS

« Ensure that all your images are in the same Amazon S3 bucket and that the value of source-
ref in every JSON Line references the bucket where your images are stored. Alternatively,
choose a preferred Amazon S3 bucket and remove the JSON Lines where source-ref doesn't
reference your preferred bucket.

ERROR_INVALID_PERMISSIONS_IMAGES_S3_BUCKET

Error message

The permissions for the images S3 bucket are invalid.

Terminal manifest content errors 209

Rekognition Custom Labels Guide

More information

The permissions on the Amazon S3 bucket that contains the images are incorrect.
You can't use the Amazon Rekognition Custom Labels console to fix this error.

To fix ERROR_INVALID_PERMISSIONS_IMAGES_S3_BUCKET

e Check the permissions of the bucket containing the images. The value of the source-ref for
an image contains the bucket location.

ERROR_INVALID_IMAGES_S3_BUCKET_OWNER

Error message
Invalid owner id for images S3 bucket.
More information

The owner of the bucket that contains the training or test images is different from the owner of the
bucket that contains the training or test manifest. You can use the following command to find the
owner of a bucket.

aws s3api get-bucket-acl --bucket amzn-s3-demo-bucket

The OWNER ID must match for the buckets that store the images and manifest files.
To fix ERROR_INVALID_IMAGES_S3_BUCKET_OWNER

1. Choose the desired owner of the training, testing, output, and image buckets. The owner must
have permissions to use Amazon Rekognition Custom Labels.

2. For each bucket not currently owned by the desired owner, create a new Amazon S3 bucket
owned by the preferred owner.

3. Copy the old bucket contents to the new bucket. For more information, see How can | copy

objects between Amazon S3 buckets?.

You can't use the Amazon Rekognition Custom Labels console to fix this error.

Terminal manifest content errors 210

https://aws.amazon.com/premiumsupport/knowledge-center/move-objects-s3-bucket/
https://aws.amazon.com/premiumsupport/knowledge-center/move-objects-s3-bucket/

Rekognition Custom Labels Guide

ERROR_INSUFFICIENT_IMAGES_PER_LABEL_FOR_AUTOSPLIT

Error message
The manifest file contains insufficient labeled images per label to perform auto-split.
More information

During model training, you can create a testing dataset by using 20% of the images from the
training dataset. ERROR_INSUFFICIENT_IMAGES_PER_LABEL_FOR_AUTOSPLIT occurs when there
aren't enough images to create an acceptable testing dataset.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
To fix ERROR_INSUFFICIENT_IMAGES_PER_LABEL_FOR_AUTOSPLIT

« Add more labeled image to your training dataset. You can add images in the Amazon
Rekognition Custom Labels console by adding images to the training dataset, or by adding
JSON Lines to your training manifest. For more information, see Managing datasets.

ERROR_MANIFEST_TOO_FEW_LABELS

Error message
The manifest file has too few labels.
More information

Training and testing datasets have a required minumum number of labels. The minimum depends
on if the dataset trains/tests a model to detect image-level labels (classification) or if the model
detects object locations. If the training dataset is split to create a testing dataset, the number of
labels in the dataset is determined after the training dataset is split. For more information, see
Guidelines and quotas in Amazon Rekognition Custom Labels.

To fix ERROR_MANIFEST_TOO_FEW_LABELS (console)

1. Add more new labels to the dataset. For more information, see Managing labels.

2. Add the new labels to images in the dataset. If your model detects image-level labels, see
Assigning image-level labels to an image. If your model detects object locations, see the
section called “Labeling objects with bounding boxes".

Terminal manifest content errors 211

Rekognition Custom Labels Guide

To fix ERROR_MANIFEST_TOO_FEW_LABELS (JSON Line)

« Add JSON Lines for new images that have new labels. For more information, see Creating
a manifest file. If your model detects image-level labels, you add new labels names to the
class-name field. For example, the label for the following image is Sunrise.

"source-ref": "s3://bucket/images/sunrise.png",
"testdataset-classification_Sunrise": 1,
"testdataset-classification_Sunrise-metadata": {

"confidence": 1,

"job-name": "labeling-job/testdataset-classification_Sunrise",

"class-name": "Sunrise",

"human-annotated": "yes",

"creation-date": "2018-10-18T22:18:13.527256",

"type": "groundtruth/image-classification"

If your model detects object locations, add new labels to the class-map, as shown in the
following example.

{

"source-ref": "s3://custom-labels-bucket/images/IMG_1186.png",
"bounding-box": {

"image_size": [{

"width": 640,
"height": 480,
"depth": 3

1,

"annotations": [{
"class_id": 1,

"top": 251,
"left": 399,
"width": 155,
"height": 101
3, {

"class_id": 0,
"top": 65,
"left": 86,
"width": 220,

Terminal manifest content errors 212

Rekognition Custom Labels Guide

"height": 334
]
3,

"bounding-box-metadata": {

"objects": [{
"confidence": 1

3, {
"confidence": 1

1,

"class-map": {
"Q": "Echo",
"1": "Echo Dot"

},

"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256",
"job-name": "my job"

You need to map the class map table to the bounding box annotations. For more information,
see Object localization in manifest files.

ERROR_MANIFEST_TOO_MANY_LABELS

Error message
The manifest file has too many labels.
More information

The number of unique labels in the manifest (dataset) is more than the allowed limit. If the training
dataset is split to create a testing dataset, the mumber of labels is determined after the split.

To fix ERROR_MANIFEST_TOO_MANY_LABELS (Console)

« Remove labels from the dataset. For more information, see Managing labels. The labels are
automatically removed from the images and bounding boxes in your dataset.

Terminal manifest content errors 213

Rekognition Custom Labels Guide

To fix ERROR_MANIFEST_TOO_MANY_LABELS (JSON Line)

« Manifests with image level JSON Lines - If the image has a single label, remove the JSON Lines
for images that use the desired label. If the JSON Line contains multiple labels, remove only
the JSON object for the desired label. For more information, see Adding multiple image-level
labels to an image.

Manifests with object location JSON Lines — Remove the bounding box and associated label
information for the label that you want to remove. Do this for each JSON Line that contains
the desired label. You need to remove the label from the class-map array and corresponding
objects in the objects and annotations array. For more information, see Object localization

in manifest files.

ERROR_INSUFFICIENT_LABEL_OVERLAP

Error message
Less than {}% label overlap between the training and testing manifest files.
More information

There is less than 50% overlap between the testing dataset label names and the training dataset
label names.

To fix ERROR_INSUFFICIENT_LABEL_OVERLAP (Console)

« Remove labels from the training dataset. Alternatively, add more common labels to your
testing dataset. For more information, see Managing labels. The labels are automatically
removed from the images and bounding boxes in your dataset.

To fix ERROR_INSUFFICIENT_LABEL_OVERLAP by removing labels from the training dataset
(JSON Line)

« Manifests with image level JSON Lines - If the image has a single label, remove the JSON Line
for the image that use the desired label. If the JSON Line contains multiple labels, remove only
the JSON object for the desired label. For more information, see Adding multiple image-level
labels to an image. Do this for each JSON Line in the manifest that contains the label that you
want to remove.

Terminal manifest content errors 214

Rekognition Custom Labels Guide

Manifests with object location JSON Lines — Remove the bounding box and associated label
information for the label that you want to remove. Do this for each JSON Line that contains
the desired label. You need to remove the label from the class-map array and corresponding
objects in the objects and annotations array. For more information, see Object localization

in manifest files.

To fix ERROR_INSUFFICIENT_LABEL_OVERLAP by adding common labels to the testing dataset
(JSON Line)

o Add JSON Lines to the testing dataset that include images labeled with labels already in the
training dataset. For more information, see Creating a manifest file.

ERROR_MANIFEST_TOO_FEW_USABLE_LABELS

Error message
The manifest file has too few usable labels.
More information

A training manifest can contain JSON Lines in image-level label format and in object location
format. Depending on type of JSON Lines found in the training manifest, Amazon Rekognition
Custom Labels chooses to create a model that detects image-level labels, or a model that detects
object locations. Amazon Rekognition Custom Labels filters out valid JSON records for JSON Lines
that are not in the chosen format. ERROR_MANIFEST_TOO_FEW_USABLE_LABELS occurs when the
number of labels in the chosen model type manifest is insufficient to train the model.

A minimum of 1 label is required to train a model that detects image-level labels. A minimum of 2
labels is required to train a model that object locations.

To fix ERROR_MANIFEST_TOO_FEW_USABLE_LABELS (Console)

1. Check the use_case field in the manifest summary.

2. Add more labels to the training dataset for the use case (image level or object localization)
that matches the value of use_case. For more information, see Managing labels. The labels

are automatically removed from the images and bounding boxes in your dataset.

Terminal manifest content errors 215

Rekognition Custom Labels Guide

To fix ERROR_MANIFEST_TOO_FEW_USABLE_LABELS (JSON Line)

1. Check the use_case field in the manifest summary.

2. Add more labels to the training dataset for the use case (image level or object localization)
that matches the value of use_case. For more information, see Creating a manifest file.

ERROR_INSUFFICIENT_USABLE_LABEL_OVERLAP

Error message
Less than {}% usable label overlap between the training and testing manifest files.

More information

A training manifest can contain JSON Lines in image-level label format and in object location
format. Depending on the formats found in the training manifest, Amazon Rekognition Custom
Labels chooses to create a model that detects image-level labels, or a model that detects object
locations. Amazon Rekognition Custom Labels doesn't use valid JSON records for JSON Lines that
are not in the chosen model format. ERROR_INSUFFICIENT_USABLE_LABEL_OVERLAP occurs when
there is less than 50% overlap between the testing and training labels that are used.

To fix ERROR_INSUFFICIENT_USABLE_LABEL_OVERLAP (Console)

« Remove labels from the training dataset. Alternatively, add more common labels to your
testing dataset. For more information, see Managing labels. The labels are automatically

removed from the images and bounding boxes in your dataset.

To fix ERROR_INSUFFICIENT_USABLE_LABEL_OVERLAP by removing labels from the training
dataset (JSON Line)

« Datasets used to detect image-level labels - If the image has a single label, remove the JSON
Line for the image that use the desired label. If the JSON Line contains multiple labels, remove
only the JSON object for the desired label. For more information, see Adding multiple image-
level labels to an image. Do this for each JSON Line in the manifest that contains the label that
you want to remove.

Terminal manifest content errors 216

Rekognition Custom Labels Guide

Datasets used to detects object locations — Remove the bounding box and associated label
information for the label that you want to remove. Do this for each JSON Line that contains
the desired label. You need to remove the label from the class-map array and corresponding
objects in the objects and annotations array. For more information, see Object localization

in manifest files.

To fix ERROR_INSUFFICIENT_USABLE_LABEL_OVERLAP by adding common labels to the testing
dataset (JSON Line)

o Add JSON Lines to the testing dataset that include images labeled with labels already in the
training dataset. For more information, see Creating a manifest file.

ERROR_FAILED_IMAGES_S3_COPY

Error message

Failed to copy images from S3 bucket.

More information

The service wasn't able to copy any of the images in your your dataset.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
To fix ERROR_FAILED_IMAGES_S3_COPY

1. Check the permissions of your images.

2. If you are using AWS KMS, check the bucket policy. For more information, see Decrypting files

encrypted with AWS Key Management Service.

The manifest file has too many terminal errors.

There are too many JSON lines with terminal content errors.
To fix ERROR_TOO_MANY_RECORDS_IN_ERROR

o Reduce the number of JSON Lines (images) with terminal content errors. For more
information, see Terminal manifest content errors.

Terminal manifest content errors 217

Rekognition Custom Labels Guide

You can't use the Amazon Rekognition Custom Labels console to fix this error.

Non-Terminal JSON Line Validation Errors

This topic lists the non-terminal JSON Line validation errors reported by Amazon Rekognition
Custom Labels during training. The errors are reported in the training and testing validation
manifest. For more information, see Understanding training and testing validation result manifests.

You can fix a non-terminal JSON Line error by updating the JSON Line in the training or test
manifest file. You can also remove the JSON Line from the manifest, but doing so might reduce the
quality of your model. If there are many non-terminal validation errors, you might find it easier to
recreate the manifest file. Validation errors typically occur in manually created manifest files. For
more information, see Creating a manifest file. For information about fixing validation errors, see

Fixing training errors. Some errors can be fixed by using the Amazon Rekognition Custom Labels

console.
ERROR_MISSING_SOURCE_REF

Error message
The source-ref key is missing.
More information

The JSON Line source-ref field provides the Amazon S3 location of an image. This error occurs
when the source-ref key is missing or is misspelt. This error typically occurs in manually created
manifest files. For more information, see Creating a manifest file.

To fix ERROR_MISSING_SOURCE_REF

1. Check that the source-ref key is present and is spelt correctly. A complete source-ref key
and value is similar to the following. is "source-ref": "s3://bucket/path/image".

2. Update or the source-ref key in the JSON Line. Alternatively, remove, the JSON Line from
the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this error.

ERROR_INVALID_SOURCE_REF_FORMAT

Error message

The format of the source-ref value is invalid.

Non-Terminal JSON Line Validation Errors 218

Rekognition Custom Labels Guide

More information

The source-ref key is present in the JSON Line, but the schema of the Amazon S3

path is incorrect. For example, the pathis https://.... instead of S3://.....An
ERROR_INVALID_SOURCE_REF_FORMAT error typically occurs in manually created manifest files.
For more information, see Creating a manifest file.

To fix ERROR_INVALID_SOURCE_REF_FORMAT

1. Check that the schemais "source-ref": "s3://bucket/path/image". For example,
"source-ref": "s3://custom-labels-console-us-east-1-1111111111/
images/000000242287 .jpg".

2. Update, or remove, the JSON Line in the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this
ERROR_INVALID_SOURCE_REF_FORMAT.

ERROR_NO_LABEL_ATTRIBUTES
Error message

No label attributes found.

More information

The label attribute or the label attribute -metadata key name (or both) is invalid or missing. In
the following example, ERROR_NO_LABEL_ATTRIBUTES occurs whenever the bounding-box or
bounding-box-metadata key (or both) is missing. For more information, see Creating a manifest
file.

{
"source-ref": "s3://custom-labels-bucket/images/IMG_1186.png",
"bounding-box": {
"image_size": [{

"width": 640,
"height": 480,
"depth": 3

1,

"annotations": [{
"class_id": 1,

Non-Terminal JSON Line Validation Errors 219

Rekognition Custom Labels Guide

"top": 251,
"left": 399,
"width": 155,
"height": 101
3, {
"class_id": 0,
"top": 65,
"left": 86,
"width": 220,
"height": 334
1]
.
"bounding-box-metadata": {
"objects": [{
"confidence": 1
o Aq
"confidence": 1
1,
"class-map": {
"Q": "Echo",
"1": "Echo Dot"
.
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256",
"job-name": "my job"

A ERROR_NO_LABEL_ATTRIBUTES error typically occurs in a manually created manifest file. For
more information, see Creating a manifest file.

To fix ERROR_NO_LABEL_ATTRIBUTES

1. Check that label attribute identifier and label attribute identifer -metadata keys are present
and that the key names are spelt correctly.

2. Update, or remove, the JSON Line in the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix
ERROR_NO_LABEL_ATTRIBUTES.

Non-Terminal JSON Line Validation Errors 220

Rekognition

Custom Labels Guide

ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT

Error message

The format of the label attribute {} is invalid.

More information

The schema for the label attribute key is missing or invalid. An

ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT error typically occurs in manually created manifest
files. for more information, see Creating a manifest file.

To fix ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT

1. Check that the JSON Line section for the label attribute key is correct. In the following
example object location example, the image_size and annotations objects must be

correct. The label attribute key is named bounding-box.

"bounding-box": {

2. Update, or remove, the JSON Line in the manifest file.

"class_id": 1,

"top": 251,
"left": 399,
"width": 155,
"height": 101
;o
"class_id": 0O,
"top": 65,
"left": 86,
"width": 220,
"height": 334

1]
}I

'image_size": [{
"width": 640,
"height": 480,
"depth": 3

1,
"annotations": [{

Non-Terminal JSON Line Validation Errors

221

Rekognition Custom Labels Guide

You can't use the Amazon Rekognition Custom Labels console to fix this error.
ERROR_INVALID_LABEL_ATTRIBUTE_METADATA_FORMAT

Error message
The format of the label attribute metadata is invalid.
More information

The schema for the label attribute metadata key is missing or invalid. An
ERROR_INVALID_LABEL_ATTRIBUTE_METADATA_FORMAT error typically occurs in manually
created manifest files. For more information, see Creating a manifest file.

To fix ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT

1. Check that the JSON Line schema for the label attribute metadata key is similar to the
following example. The label attribute metadata key is named bounding-box-metadata.

"bounding-box-metadata": {

"objects": [{
"confidence": 1

¥, {
"confidence": 1

1,

"class-map": {
"Q@": "Echo",
"1": "Echo Dot"

3,

"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256",
"job-name": "my job"

2. Update, or remove, the JSON Line in the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this error.

Non-Terminal JSON Line Validation Errors 222

Rekognition Custom Labels Guide

ERROR_NO_VALID_LABEL_ATTRIBUTES

Error message
No valid label attributes found.
More information

No valid label attributes were found in the JSON Line. Amazon Rekognition

Custom Labels checks both the label attribute and the label attribute identifier. An
ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT error typically occurs in manually created manifest
files. for more information, see Creating a manifest file.

If 2 JSON Line isn't in a supported SageMaker Al manifest format, Amazon Rekognition Custom
Labels marks the JSON Line as invalid and an ERROR_NO_VALID_LABEL_ATTRIBUTES error is
reported. Currently, Amazon Rekognition Custom Labels supports classification job and bounding
box formats. For more information, see Creating a manifest file.

To fix ERROR_NO_VALID_LABEL_ATTRIBUTES

1. Check that the JSON for the label attribute key and label attribute metadata is correct.

2. Update, or remove, the JSON Line in the manifest file. For more information, see the section
called “Creating a manifest file".

You can't use the Amazon Rekognition Custom Labels console to fix this error.
ERROR_MISSING_BOUNDING_BOX_CONFIDENCE

Error message
One or more bounding boxes has a missing confidence value.
More information

The confidence key is missing for one or more object location bounding boxes. The confidence
key for a bounding box is in the label attribute metadata, as shown in the following example.

A ERROR_MISSING_BOUNDING_BOX_CONFIDENCE error typically occurs in manually created
manifest files. For more information, see the section called “Object localization in manifest files".

"bounding-box-metadata": {
"objects": [{
"confidence": 1

Non-Terminal JSON Line Validation Errors 223

Rekognition Custom Labels Guide

I

"confidence": 1

11,

To fix ERROR_MISSING_BOUNDING_BOX_CONFIDENCE

1. Check that the objects array in the label attribute contains the same number of confidence
keys as there are objects in the label attribute annotations array.

2. Update, or remove, the JSON Line in the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
ERROR_MISSING_CLASS_MAP_ID

Error message
One of more class ids is missing from the class map.
More information

The class_id in an annotation (bounding box) object doesn't have a matching entry in the
label attribute metadata class map (class-map). For more information, see Object localization
in manifest files. A ERROR_MISSING_CLASS_MAP_ID error typically occurs in manually created
manifest files.

To fix ERROR_MISSING_CLASS_MAP_ID

1. Check that the class_id value in each annotation (bounding box) object has a corresponding
value in the class-map array, as shown in the following example. The annotations array
and class_map array should have the same number of elements.

{

"source-ref": "s3://custom-labels-bucket/images/IMG_1186.png",
"bounding-box": {

"image_size": [{

"width": 640,
"height": 480,
"depth": 3

3,

"annotations": [{

Non-Terminal JSON Line Validation Errors 224

Rekognition

Custom Labels Guide

"class_id": 1,
"top": 251,
"left": 399,
"width": 155,
"height": 101
Yo i
"class_id": 0,
"top": 65,
"left": 86,
"width": 220,
"height": 334
1]
},
"bounding-box-metadata": {
"objects": [{
"confidence": 1
Yo &
"confidence": 1
1,
"class-map": {
"Q": "Echo",
"1": "Echo Dot"
},
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256",
"job-name": "my job"

2. Update, or remove, the JSON Line in the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
ERROR_INVALID_JSON_LINE

Error message

The JSON Line has an invalid format.

Non-Terminal JSON Line Validation Errors

225

Rekognition Custom Labels Guide

More information

An unexpected character was found in the JSON Line. The JSON Line is replaced with a new JSON
Line that contains only the error information. An ERROR_INVALID_JSON_LINE error typically occurs
in manually created manifest files. For more information, see the section called “Object localization

in manifest files”.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
To fix ERROR_INVALID_JSON_LINE

1. Open the manifest file and navigate to the JSON Line where the ERROR_INVALID_JSON_LINE
error occurs.

2. Check that the JSON Line doesn't contain invalid characters and that required ; or , characters
are not missing.

3. Update, or remove, the JSON Line in the manifest file.

ERROR_INVALID_IMAGE

Error message
The image is invalid. Check S3 path and/or image properties.
More information

The file referenced by source-ref is not a valid image. Potential causes include the image aspect
ratio, the size of the image, and the image format.

For more information, see Guidelines and quotas.

To fix ERROR_INVALID_IMAGE

1. Check the following.

The aspect ratio of the image is less than 20:1.

The size of the image is greater than 15 MB

The image is in PNG or JPEG format.

The path to the image in source-ref is correct.

« The minimum image dimension of the image is greater 64 pixels x 64 pixels.

Non-Terminal JSON Line Validation Errors 226

Rekognition Custom Labels Guide

« The maximum image dimension of the image is less than 4096 pixels x 4096 pixels.

2. Update, or remove, the JSON Line in the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
ERROR_INVALID_IMAGE_DIMENSION

Error message
The image dimension(s) do not conform to allowed dimensions.
More information

The image referenced by source-ref doesn't conform to the allowed image dimensions.
The minimum dimension is 64 pixels. The maximum dimension is 4096 pixels.
ERROR_INVALID_IMAGE_DIMENSION is reported for images with bounding boxes.

For more information, see Guidelines and quotas.

To fix ERROR_INVALID_IMAGE_DIMENSION (Console)

1. Update the image in the Amazon S3 bucket with dimensions that Amazon Rekognition Custom
Labels can process.

2. In the Amazon Rekognition Custom Labels console, do the following:

a. Remove the existing bounding boxes from the image.
b. Re-add the bounding boxes to the image.

c. Save your changes.

For more information, Labeling objects with bounding boxes.

To fix ERROR_INVALID_IMAGE_DIMENSION (SDK)

1. Update the image in the Amazon S3 bucket with dimensions that Amazon Rekognition Custom
Labels can process.

2. Get the existing JSON Line for the image by calling ListDatasetEntries. For the

SourceRefContains input parameter specify the Amazon S3 location and filename of the
image.

Non-Terminal JSON Line Validation Errors 227

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListDatasetEntries

Rekognition Custom Labels Guide

3. Call UpdateDatasetEntries and provide the JSON line for the image. Make sure the value of
source-ref matches the image location in the Amazon S3 bucket. Update the bounding box
annotations to match the bounding box dimensions needed for the updated image.

{

"source-ref": "s3://custom-labels-bucket/images/IMG_1186.png",
"bounding-box": {

"image_size": [{

"width": 640,
"height": 480,
"depth": 3

3,

"annotations": [{
"class_id": 1,
"top": 251,
"left": 399,
"width": 155,
"height": 101
by
"class_id": 0O,
"top": 65,
"left": 86,
"width": 220,
"height": 334
1]
},
"bounding-box-metadata": {
"objects": [{
"confidence": 1
3, {
"confidence": 1
1,
"class-map": {
"Q": "Echo",
"1": "Echo Dot"
},
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2013-11-18T02:53:27",
"job-name": "my job"

Non-Terminal JSON Line Validation Errors 228

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_UpdateDatasetEntries

Rekognition Custom Labels Guide

ERROR_INVALID_BOUNDING_BOX

Error message
The bounding box has off frame values.
More information

The bounding box information specifies an image that is either off the image frame or contains
negative values.

For more information, see Guidelines and quotas.

To fix ERROR_INVALID_BOUNDING_BOX

1. Check the values of the bounding boxes in the annotations array.

"bounding-box": {
"image_size": [{

"width": 640,
"height": 480,
"depth": 3

1,

"annotations": [{
"class_id": 1,

"top": 251,

"left": 399,

"width": 155,

"height": 101
]

}I

2. Update, or alternatively remove, the JSON Line from the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
ERROR_NO_VALID_ANNOTATIONS
Error message

No valid annotations found.

Non-Terminal JSON Line Validation Errors 229

Rekognition Custom Labels Guide

More information

None of the annotation objects in the JSON Line contain valid bounding box information.
To fix ERROR_NO_VALID_ANNOTATIONS

1. Update the annotations array to include valid bounding box objects. Also, check that
corresponding bounding box information (confidence and class_map) in the label attribute
metadata is correct. For more information, see Object localization in manifest files.

{
"source-ref": "s3://custom-labels-bucket/images/IMG_1186.png",
"bounding-box": {
"image_size": [{

"width": 640,
"height": 480,
"depth": 3
1,
"annotations": [
{
"class_id": 1, #annotation object
"top": 251,
"left": 399,
"width": 155,
"height": 101
[P
"class_id": 0,
"top": 65,
"left": 86,
"width": 220,
"height": 334
1]
},
"bounding-box-metadata": {
"objects": [
>{
"confidence": 1 #confidence object
b
{
"confidence": 1
1,

"class-map": {
"@": "Echo", #label

Non-Terminal JSON Line Validation Errors 230

Rekognition

Custom Labels Guide

"1": "Echo Dot"
I
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256",
"job-name": "my job"
}
}

2. Update, or alternatively remove, the JSON Line from the manifest file.

You can't use the Amazon Rekognition Custom Labels console to fix this error.
ERROR_BOUNDING_BOX_TOO_SMALL
Error message

The height and width of the bounding box is too small.

More information

The bounding box dimensions (height and width) have to be greater than 1 x 1 pixels.

During training, Amazon Rekognition Custom Labels resizes an image if any of its dimensions

are greater than 1280 pixels (the source images aren't affected). The resulting bounding box
heights and widths must be greater than 1 x 1 pixels. A bounding box location is stored in the
annotations array of an object location JSON Line. For more information, see Object localization

in manifest files

"bounding-box": {
"image_size": [{

"width": 640,
"height": 480,
"depth": 3

1,

"annotations": [{
"class_id": 1,
"top": 251,
"left": 399,
"width": 155,
"height": 101

1]

},

Non-Terminal JSON Line Validation Errors

231

Rekognition Custom Labels Guide

The error information is added to the annotation object.
To fix ERROR_BOUNDING_BOX_TOO_SMALL
o Choose one of the following options.

« Increase the size of bounding boxes that are too small.

« Remove bounding boxes that are too small. For information about removing a bounding
box, see ERROR_TOO_MANY_BOUNDING_BOXES.

« Remove the image (JSON Line) from the manifest.

ERROR_TOO_MANY_BOUNDING_BOXES

Error message
There are more bounding boxes than the allowed maximum.
More information

There are more bounding boxes than the allowed limit (50). You can remove excess bounding boxes
in the Amazon Rekognition Custom Labels console, or you can remove them from the JSON Line.

To fix ERROR_TOO_MANY_BOUNDING_BOXES (Console).

Decide which bounding boxes to remove.

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.

In the left navigation pane, choose the project that contains the dataset that you want to use.

1
2
3
4
5
6. In the Datasets section, choose the dataset that you want to use.
7. In the dataset gallery page, choose Start labeling to enter labeling mode.
8. Choose the image that you want to remove bounding boxes from.

9. Choose Draw bounding box.

1

0. In the drawing tool, choose the bounding box that you want to delete.

Non-Terminal JSON Line Validation Errors 232

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

11. Press the delete key on your keyboard to delete the bounding box.

12. Repeat the previous 2 steps until you have deleted enough bounding boxes.
13. Choose Done

14. Choose Save changes to save your changes.

15. Choose Exit to exit labeling mode.

To fix ERROR_TOO_MANY_BOUNDING_BOXES (JSON Line).

1. Open the manifest file and navigate to the JSON Line where the
ERROR_TOO_MANY_BOUNDING_BOXES error occurs.

2. Remove the following for each bounding box that you want to remove.

« Remove the required annotation object from annotations array.

« Remove the corresponding confidence object from the objects array in the label
attribute metadata.

« If no longer used by other bounding boxes, remove the label from the class-map.

Use the following example to identify which items to remove.

{

"source-ref": "s3://custom-labels-bucket/images/IMG_1186.png",
"bounding-box": {

"image_size": [{

"width": 640,
"height": 480,
"depth": 3
1,
"annotations": [
{
"class_id": 1, #annotation object
"top": 251,
"left": 399,
"width": 155,
"height": 101
Yo b
"class_id": 0,
"top": 65,
"left": 86,

Non-Terminal JSON Line Validation Errors 233

Rekognition Custom Labels Guide

"width": 220,
"height": 334
1]
.
"bounding-box-metadata": {
"objects": [
>{
"confidence": 1 #confidence object
},
{
"confidence": 1
1,

"class-map": {

"Q": "Echo", #label

"1": "Echo Dot"
.
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2018-10-18T22:18:13.527256",
"job-name": "my job"

WARNING_UNANNOTATED_RECORD
Warning Message

Record is unannotated.

More information

An image added to a dataset by using the Amazon Rekognition Custom Labels console wasn't
labeled. The JSON line for the image isn't used for training.

"source-ref": "s3://bucket/images/IMG_1186.png",
"warnings": [
{
"code": "WARNING_UNANNOTATED_RECORD",
"message": "Record is unannotated."

Non-Terminal JSON Line Validation Errors 234

Rekognition Custom Labels Guide

]

To fix WARNING_UNANNOTATED_RECORD

« Label the image by using the Amazon Rekognition Custom Labels console. For instructions, see
Assigning image-level labels to an image.

WARNING_NO_ANNOTATIONS

Warning Message
No annotations provided.
More information

A JSON Line in Object Localization format doesn't contain any bounding box information, despite
being annotated by a human (human-annotated = yes). The JSON Line is valid, but isn't

used for training. For more information, see Understanding training and testing validation result
manifests.

"source-ref": "s3://bucket/images/IMG_1186.png",
"bounding-box": {
"image_size": [

{
"width": 640,
"height": 480,
"depth": 3
}
1,
"annotations": [
1,
"warnings": [
{
"code": "WARNING_NO_ATTRIBUTE_ANNOTATIONS",
"message": "No attribute annotations were found."
}

Non-Terminal JSON Line Validation Errors 235

Rekognition Custom Labels Guide

]
.
"bounding-box-metadata": {
"objects": [
1,
"class-map": {
},
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2013-11-18 02:53:27",
"job-name": "my job"
.
"warnings": [
{
"code": "WARNING_NO_ANNOTATIONS",
"message": "No annotations were found."
}
]

To fix WARNING_NO_ANNOTATIONS
« Choose one of the following options.

« Add the bounding box (annotations) information to the JSON Line. For more information,
see Object localization in manifest files.

« Remove the image (JSON Line) from the manifest.

WARNING_NO_ATTRIBUTE_ANNOTATIONS
Warning Message

No attribute annotations provided.

More information

A JSON Line in Object Localization format doesn't contain any bounding box annotation
information, despite being annotated by a human (human-annotated = yes). The

Non-Terminal JSON Line Validation Errors 236

Rekognition Custom Labels Guide

annotations array is not present or is not populuated. The JSON Line is valid, but isn't used for
training. For more information, see Understanding training and testing validation result manifests.

{
"source-ref": "s3://bucket/images/IMG_1186.png",
"bounding-box": {
"image_size": [
{
"width": 640,
"height": 480,
"depth": 3
}
1,
"annotations": [
1,
"warnings": [
{
"code": "WARNING_NO_ATTRIBUTE_ANNOTATIONS",
"message": "No attribute annotations were found."
}
]
},
"bounding-box-metadata": {
"objects": [
1,
"class-map": {
.
"type": "groundtruth/object-detection",
"human-annotated": "yes",
"creation-date": "2013-11-18 02:53:27",
"job-name": "my job"
},
"warnings": [
{
"code": "WARNING_NO_ANNOTATIONS",
"message": "No annotations were found."
}
]
}

Non-Terminal JSON Line Validation Errors 237

Rekognition Custom Labels Guide

To fix WARNING_NO_ATTRIBUTE_ANNOTATIONS
o Choose one of the following options.

« Add one or more bounding box annotation objects to the JSON Line. For more
information, see Object localization in manifest files.

« Remove the bounding box attribute.

« Remove the image (JSON Line) from the manifest. If other valid bounding box attributes
exist in the JSON Line, you can instead remove just the invalid bounding box attribute from
the JSON Line.

ERROR_UNSUPPORTED_USE_CASE_TYPE
Warning Message
More information

The value of the type field isn't groundtruth/image-classification or groundtruth/
object-detection. For more information, see Creating a manifest file.

{
"source-ref": "s3://bucket/test_normal_8.jpg",
"BB": {
"annotations": [

{
"left": 1768,
"top": 1007,
"width": 448,
"height": 295,
"class_id": 0

3,

{
"left": 1794,
"top": 1306,
"width": 432,
"height": 411,
"class_id": 1

.

{
"left": 2568,
"top": 1346,

Non-Terminal JSON Line Validation Errors 238

Rekognition Custom Labels Guide

"width": 710,
"height": 305,
"class_id": 2

I
{
"left": 2571,
"top": 1020,
"width": 644,
"height": 312,
"class_id": 3
}
1,
"image_size": [
{
"width": 4000,
"height": 2667,
"depth": 3
}
]

I
"BB-metadata": {
"job-name": "labeling-job/BB",
"class-map": {
"@": "comparator",
"1": "pot_resistor",
"2": "ir_ phototransistor",

"3 "ir_ led"
I
"human-annotated": "yes",
"objects": [
{
"confidence": 1
},
{
"confidence": 1
I
{
"confidence": 1
},
{
"confidence": 1
}
1,

"creation-date": "2021-06-22T09:58:34.81172",

Non-Terminal JSON Line Validation Errors 239

Rekognition Custom Labels Guide

"type": "groundtruth/wrongtype",
"cl-errors": [

{
"code": "ERROR_UNSUPPORTED_USE_CASE_TYPE",
"message": "The use case type of the BB-metadata label attribute
metadata is unsupported. Check the type field."
}

]

iy
"cl-metadata": {
"is_labeled": true

1,
"cl-errors": [
{
"code": "ERROR_NO_VALID_LABEL_ATTRIBUTES",
"message": "No valid label attributes found."
}
]

To fix ERROR_UNSUPPORTED_USE_CASE_TYPE
« Choose one of the following options:

« Change the value of the typefield to groundtruth/image-classificationor
groundtruth/object-detection, depending on the type of model that you want to
create. For more information, see Creating a manifest file.

« Remove the image (JSON Line) from the manifest.

ERROR_INVALID_LABEL_NAME_LENGTH

More information

The length of a label name is too long. The maximum length is 256 characters.
To fix ERROR_INVALID_LABEL_NAME_LENGTH

« Choose one of the following options:

« Reduce the length of the label name to 256 characters or less.

« Remove the image (JSON Line) from the manifest.

Non-Terminal JSON Line Validation Errors 240

Rekognition Custom Labels Guide

Improving a trained Amazon Rekognition Custom Labels
model

When training completes, you evaluate the performance of the model. To help you, Amazon
Rekognition Custom Labels provides summary metrics and evaluation metrics for each label. For
information about the available metrics, see Metrics for evaluating your model. To improve your

model using metrics, see Improving an Amazon Rekognition Custom Labels model.

If you're satisfied with the accuracy of your model, you can start to use it. For more information,
see Running a trained Amazon Rekognition Custom Labels model.

Topics

Metrics for evaluating your model

Accessing evaluation metrics (Console)

Accessing Amazon Rekognition Custom Labels evaluation metrics (SDK)

Improving an Amazon Rekognition Custom Labels model

Metrics for evaluating your model

After your model is trained, Amazon Rekognition Custom Labels returns metrics from model
testing, which you can use to evaluate the performance of your model. This topic describes the
metrics available to you, and how to understand if your trained model is performing well.

The Amazon Rekognition Custom Labels console provides the following metrics as a summary of
the training results and as metrics for each label:

e Precision

e Recall

- F1

Each metric we provide is a commonly used metric for evaluating the performance of a Machine
Learning model. Amazon Rekognition Custom Labels returns metrics for the results of testing
across the entire test dataset, along with metrics for each custom label. You are also able to review

Metrics for evaluating your model 241

Rekognition Custom Labels Guide

the performance of your trained custom model for each image in your test dataset. For more
information, see Accessing evaluation metrics (Console).

Evaluating model performance

During testing, Amazon Rekognition Custom Labels predicts if a test image contains a custom
label. The confidence score is a value that quantifies the certainty of the model'’s prediction.

If the confidence score for a custom label exceeds the threshold value, the model output will
include this label. Predictions can be categorized in the following ways:

» True positive — The Amazon Rekognition Custom Labels model correctly predicts the presence of
the custom label in the test image. That is, the predicted label is also a "ground truth" label for
that image. For example, Amazon Rekognition Custom Labels correctly returns a soccer ball label
when a soccer ball is present in an image.

 False positive — The Amazon Rekognition Custom Labels model incorrectly predicts the presence
of a custom label in a test image. That is, the predicted label isn't a ground truth label for the
image. For example, Amazon Rekognition Custom Labels returns a soccer ball label, but there is
no soccer ball label in the ground truth for that image.

 False negative — The Amazon Rekognition Custom Labels model doesn't predict that a custom
label is present in the image, but the "ground truth" for that image includes this label. For
example, Amazon Rekognition Custom Labels doesn’t return a ‘soccer ball’ custom label for an
image that contains a soccer ball.

o True negative — The Amazon Rekognition Custom Labels model correctly predicts that a custom
label isn't present in the test image. For example, Amazon Rekognition Custom Labels doesn't
return a soccer ball label for an image that doesn’t contain a soccer ball.

The console provides access to true positive, false positive, and false negative values for each
image in your test dataset. For more information, see Accessing evaluation metrics (Console).

These prediction results are used to calculate the following metrics for each label, and an
aggregate for your entire test set. The same definitions apply to predictions made by the model at
the bounding box level, with the distinction that all metrics are calculated over each bounding box
(prediction or ground truth) in each test image.

Evaluating model performance 242

Rekognition Custom Labels Guide

Intersection over Union (loU) and object detection

Intersection over Union (loU) measures the percentage of overlap between two object bounding
boxes over their combined area. The range is O (lowest overlap) to 1 (complete overlap). During
testing, a predicted bounding box is correct when the loU of the ground truth bounding box and
the predicted bounding box is at least 0.5.

Assumed threshold

Amazon Rekognition Custom Labels automatically calculates an assumed threshold value (0-1)

for each of your custom labels. You can't set the assumed threshold value for a custom label. The
assumed threshold for each label is the value above which a prediction is counted as a true or false
positive. It is set based on your test dataset. The assumed threshold is calculated based on the best
F1 score achieved on the test dataset during model training.

You can get the value of the assumed threshold for a label from the model's training results. For
more information, see Accessing evaluation metrics (Console).

Changes to assumed threshold values are typically used to improve the precision and recall of
a model. For more information, see Improving an Amazon Rekognition Custom Labels model.

Since you can't set a model's assumed threshold for a label, you can achieve the same results by
analyzing an image with DetectCustomLabels and specifying MinConfidence input parameter.
For more information, see Analyzing an image with a trained model.

Precision

Amazon Rekognition Custom Labels provides precision metrics for each label and an average
precision metric for the entire test dataset.

Precision is the fraction of correct predictions (true positives) over all model predictions (true and
false positives) at the assumed threshold for an individual label. As the threshold is increased,
the model might make fewer predictions. In general, however, it will have a higher ratio of true
positives over false positives compared to a lower threshold. Possible values for precision range
from 0-1, and higher values indicate higher precision.

For example, when the model predicts that a soccer ball is present in an image, how often is that
prediction correct? Suppose there's an image with 8 soccer balls and 5 rocks. If the model predicts
9 soccer balls—8 correctly predicted and 1 false positive—then the precision for this example is

Assumed threshold 243

Rekognition Custom Labels Guide

0.89. However, if the model predicted 13 soccer balls in the image with 8 correct predictions and 5
incorrect, then the resulting precision is lower.

For more information, see Precision and recall.

Recall

Amazon Rekognition Custom Labels provides average recall metrics for each label and an average
recall metric for the entire test dataset.

Recall is the fraction of your test set labels that were predicted correctly above the assumed
threshold. It is a measure of how often the model can predict a custom label correctly when it's
actually present in the images of your test set. The range for recall is 0-1. Higher values indicate a
higher recall.

For example, if an image contains 8 soccer balls, how many of them are detected correctly? In this
example where an image has 8 soccer balls and 5 rocks, if the model detects 5 of the soccer balls,
the recall value is 0.62. If after retraining, the new model detects 9 soccer balls, including all 8 that
were present in the image, then the recall value is 1.0.

For more information, see Precision and recall.

F1

Amazon Rekognition Custom Labels uses the F1 score metric to measure the average model
performance of each label and the average model performance of the entire test dataset.

Model performance is an aggregate measure that takes into account both precision and recall over
all labels. (for example, F1 score or average precision). The model performance score is a value
between 0 and 1. The higher the value, the better the model is performing for both recall and
precision. Specifically, model performance for classification tasks is commonly measured by F1
score. That score is the harmonic mean of the precision and recall scores at the assumed threshold.
For example, for a model with precision of 0.9 and a recall of 1.0, the F1 score is 0.947.

A high value for F1 score indicates that the model is performing well for both precision and recall.
If the model isn't performing well, for example, with a low precision of 0.30 and a high recall of
1.0, the F1 score is 0.46. Similarly if the precision is high (0.95) and the recall is low (0.20), the F1
score is 0.33. In both cases, the F1 score is low and indicates problems with the model.

For more information, see F1 score.

Recall 244

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score

Rekognition Custom Labels Guide

Using metrics

For a given model that you have trained and depending on your application, you can make

a trade-off between precision and recall by using the MinConfidence input parameter to
DetectCustomlLabels. At a higher MinConfidence value, you generally get higher precision
(more correct predictions of soccer balls), but lower recall (more actual soccer balls will be missed).
At a lower MinConfidence value, you get higher recall (more actual soccer balls correctly
predicted), but lower precision (more of those predictions will be wrong). For more information, see
Analyzing an image with a trained model.

The metrics also inform you on the steps you might take to improve model performance if needed.
For more information, see Improving an Amazon Rekognition Custom Labels model.

(® Note

DetectCustomLabels returns predictions ranging from O to 100, which correspond to the
metric range of 0-1.

Accessing evaluation metrics (Console)

During testing, the model is evaluated for its performance against the test dataset. The labels in
the test dataset are considered 'ground truth' as they represent what the actual image represents.
During testing, the model makes predictions using the test dataset. The predicted labels are
compared with the ground truth labels and the results are available in the console evaluation page.

The Amazon Rekognition Custom Labels console shows summary metrics for the entire model
and metrics for individual labels. The metrics available in the console are precision recall, F1 score,
confidence, and confidence threshold. For more information, see Improving a trained Amazon
Rekognition Custom Labels model.

You can use the console to focus on individual metrics. For example, to investigate precision
issues for a label, you can filter the training results by label and by false positive results. For more
information, see Metrics for evaluating your model.

After training, the training dataset is read-only. If you decide to improve the model, you can copy
the training dataset to a new dataset. You use the copy of the dataset to train a new version of the
model.

Using metrics 245

Rekognition Custom Labels Guide

In this step, you use the console to access the training results in the console.

To access evaluation metrics (console)

—

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.

In the left navigation pane, choose Projects.

Lok W

In the Projects page, choose the project that contains the trained model that you want to
evaluate.

o

In the Models, choose the model that you want to evaluate.

7. Choose the Evaluation tab to see the evaluation results. For information about evaluating a
model, see Improving a trained Amazon Rekognition Custom Labels model.

8. Choose View test results to see the results for individual test images. For more information,
see Metrics for evaluating your model. The following screenshot of the model evaluation

summary shows the F1 score, average precision, and overall recall for 6 labels with test results

and performance metrics. Details on using the trained model are also provided.

Accessing evaluation metrics (Console)

246

https://console.aws.amazon.com/rekognition/

Rekognition

Custom Labels Guide

rooms_19 e

Model details Use Madel Tags

Evaluation results
F1 score Info

0.902

Date completed

July 13, 2021
Trained in 1.223 hours

Per label performance (10)

Q
Label name & F1score
backyard 0.857
bathroom 0.88%
bedraom 0.900
cdloset 1.000
entry_way 1.000
floor_plan 1.000

9. After viewing the test results, choose the project name to return to the model page. The
test results page shows images with predicted labels and confidence scores for a machine

Average precision Info
0.893

Training dataset
10 labels, 61 images

Test images ¥ Precision ¢
4 1.000
9 0.889
11 1.000
2 1.000
3 1.000
2 1.000

Delete model

View test results

Owerall recall Infe
0.928

Testing dataset
10 labels, 56 images

Recall « Assumed threshold
0.750 0.286
0.889 0.185
0.818 0.262
1.000 0.169
1.000 0149
1.000 0.685

v

learning model trained on backyard and front yard image categories. Two example images are

displayed.

Accessing evaluation metrics (Console)

247

Rekognition Custom Labels Guide

Custom Labels Praojects rooms_19 rooms_19.2021-07-13T10.36.30 Performance

Evaluate image h 4
‘ @ Review the test results of your trained model for individual images. Below each image is information about the model's predicted label compared with the label assigned to the image in

the test dataset, noted by result type. You can also filter by label and result types.

Filter by label Images (56) info
Q 1 2 3 4 . 0>
Choose labels
Choose labels to filter images —
Q
backyard2.jpeg backyard4.jpeg

True paositive
False positive

False negative

¢TI Y

Labels Confidence Labels Confidence
[ronl_yar_d. 20.3% backyard_] 46.3%
False positive True positive
backyard

LA ' 21.6%
False negative

10. Use the metrics to evaluate the performance of the model. For more information, see
Improving an Amazon Rekognition Custom Labels model.

Accessing Amazon Rekognition Custom Labels evaluation
metrics (SDK)

The DescribeProjectVersions operation provides access to metrics beyond those provided in the
console.

Like the console, DescribeProjectVersions provides access to the following metrics as
summary information for the testing results and as testing results for each label:

e Precision
e Recall

il

The average threshold for all labels and the threshold for individual labels is returned.

Accessing evaluation metrics (SDK) 248

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

DescribeProjectVersions also provides access to the following metrics for classification and
image detection (object location on image).

» Confusion Matrix for image classification. For more information, see Viewing the confusion

matrix for a model.

« Mean Average Precision (mAP) for image detection.

o Mean Average Recall (mAR) for image detection.

DescribeProjectVersions also provides access to true positive, false positive, false negative,
and true negative values. For more information, see Metrics for evaluating your model.

The aggregate F1 score metric is returned directly by DescribeProjectVersions. Other metrics
are accessible from a Accessing the model summary file and Interpreting the evaluation manifest

snapshot files stored in an Amazon S3 bucket. For more information, see Accessing the summary

file and evaluation manifest snapshot (SDK).

Topics

Accessing the model summary file

Interpreting the evaluation manifest snapshot

Accessing the summary file and evaluation manifest snapshot (SDK)

Viewing the confusion matrix for a model

Reference: Training results summary file

Accessing the model summary file

The summary file contains evaluation results information about the model as a whole and metrics
for each label. The metrics are precision, recall, F1 score. The threshold value for the model is also
supplied. The summary file location is accessible from the EvaluationResult object returned by
DescribeProjectVersions. For more information, see Reference: Training results summary file.

The following is an example summary file.

{
"Version": 1,
"AggregatedEvaluationResults": {
"ConfusionMatrix": [

Accessing the model summary file 249

Rekognition Custom Labels Guide

{
"GroundTruthLabel": "CAP",
"PredictedLabel": "CAP",
"Value": 0.9948717948717949

"GroundTruthLabel": "CAP",
"PredictedLabel": "WATCH",
"Value": 0.008547008547008548

"GroundTruthLabel": "WATCH",
"PredictedLabel": "CAP",
"Value": 0.1794871794871795

"GroundTruthLabel": "WATCH",
"PredictedLabel": "WATCH",
"Value": 0.7008547008547008
}
1,
"F1Score": 0.9726959470546408,
"Precision": ©0.9719115848331294,
"Recall": 0.9735042735042735

},

"EvaluationDetails": {
"EvaluationEndTimestamp": "2019-11-21T07:30:23.910943",
"Labels": [

"CAP",

"WATCH"
1,
"NumberOfTestingImages": 624,
"NumberOfTrainingImages": 5216,

"ProjectVersionArn": "arn:aws:rekognition:us-east-l:nnnnnnnnn:project/my-project/
version/v@/1574317227432"
.
"LabelEvaluationResults": [
{

"Label": "CAP",

"Metrics": {
"F1Score": 0.9794344473007711,
"Precision": ©0.9819587628865979,
"Recall": 0.9769230769230769,
"Threshold": ©.9879502058029175

Accessing the model summary file 250

Rekognition Custom Labels Guide

},
"NumberOfTestingImages": 390

},
{
"Label": "WATCH",
"Metrics": {
"F1Score": 0.9659574468085106,
"Precision": 0.961864406779661,
"Recall": 0.9700854700854701,
"Threshold": ©0.014450683258473873

},
"NumberOfTestingImages": 234

}

Interpreting the evaluation manifest snapshot

The evaluation manifest snapshot contains detailed information about the test results. The
snapshot includes the confidence rating for each prediction. It also includes the classification of
the prediction compared to the actual classification of the image (true positive, true negative, false
positive, or false negative).

The files are a snapshot since only images that could be used for testing and training are
included. Images that can't be verified, such as images in the wrong format, aren't included in
the manifest. The testing snapshot location is accessible from the TestingDataResult object
returned by DescribeProjectVersions. The training snapshot location is accessible from
TrainingDataResult object returned by DescribeProjectVersions.

The snapshot is in SageMaker Al Ground Truth manifest output format with fields added to provide
additional information, such as the result of a detection's binary classification. The following
snippet shows the additional fields.

"rekognition-custom-labels-evaluation-details": {
"version": 1,
"is-true-positive": true,
"is-true-negative": false,
"is-false-positive": false,
"is-false-negative": false,
"is-present-in-ground-truth": true
"ground-truth-labelling-jobs": ["rekognition-custom-labels-training-job"]

Interpreting the evaluation manifest snapshot 251

Rekognition Custom Labels Guide

}

« version — The version of the rekognition-custom-labels-evaluation-details field
format within the manifest snapshot.

« is-true-positive... — The binary classification of the prediction based on how the confidence score
compares to the minimum threshold for the label.

* is-present-in-ground-truth — True if the prediction made by the model is present in the ground
truth information used for training, otherwise false. This value isn't based on whether the
confidence score exceeds the minimum threshold calculated by the model.

« ground-truth-labeling-jobs — A list of ground truth fields in the manifest line that are used for
training.

For information about the SageMaker Al Ground Truth manifest format, see Output.

The following is an example testing manifest snapshot that shows metrics for image classification
and object detection.

// For image classification
{
"source-ref": "s3://amzn-s3-demo-bucket/dataset/beckham.jpeg",
"rekognition-custom-labels-training-0": 1,
"rekognition-custom-labels-training-0-metadata": {
"confidence": 1.0,
"job-name": "rekognition-custom-labels-training-job",
"class-name": "Football",
"human-annotated": "yes",
"creation-date": "2019-09-06T00:07:25.488243",
"type": "groundtruth/image-classification"
.
"rekognition-custom-labels-evaluation-0": 1,
"rekognition-custom-labels-evaluation-@-metadata": {
"confidence": 0.95,
"job-name": "rekognition-custom-labels-evaluation-job",
"class-name": "Football",
"human-annotated": "no",
"creation-date": "2019-09-06T00:07:25.488243",
"type": "groundtruth/image-classification",
"rekognition-custom-labels-evaluation-details": {
"version": 1,
"ground-truth-labelling-jobs": ["rekognition-custom-labels-training-job"],

Interpreting the evaluation manifest snapshot 252

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-data-output.html

Rekognition Custom Labels Guide

"is-true-positive": true,
"is-true-negative": false,
"is-false-positive": false,
"is-false-negative": false,
"is-present-in-ground-truth": true

// For object detection

{
"source-ref": "s3://amzn-s3-demo-bucket/dataset/beckham.jpeg",
"rekognition-custom-labels-training-0": {
"annotations": [
{
"class_id": 0,
"width": 39,
"top": 409,
"height": 63,
"left": 712
I
1,
"image_size": [
{
"width": 1024,
"depth": 3,
"height": 768
}
]
I
"rekognition-custom-labels-training-0-metadata": {
"job-name": "rekognition-custom-labels-training-job",
"class-map": {
"Q": "Cap",
I
"human-annotated": "yes",
"objects": [
{
"confidence": 1.0
},

Interpreting the evaluation manifest snapshot 253

Rekognition

Custom Labels Guide

1,
"creation-date": "2019-10-21T22:02:18.432644",
"type": "groundtruth/object-detection"

I

"rekognition-custom-labels-evaluation": {
"annotations": [

{
"class_id": 0,
"width": 39,
"top": 409,
"height": 63,
"left": 712
},
1,
"image_size": [
{
"width": 1024,
"depth": 3,
"height": 768
}
]
},

"rekognition-custom-labels-evaluation-metadata": {

"confidence": 0.95,

"job-name": "rekognition-custom-labels-evaluation-job",
"class-map": {
"Q": "Cap",
I
"human-annotated": "no",
"objects": [
{

"confidence": 0.95,

"rekognition-custom-labels-evaluation-details": {

"version": 1,

"ground-truth-labelling-jobs": ["rekognition-custom-labels-training-job"],

"is-true-positive": true,
"is-true-negative": false,
"is-false-positive": false,
"is-false-negative": false,
"is-present-in-ground-truth": true
}
I

Interpreting the evaluation manifest snapshot

254

Rekognition Custom Labels Guide

15
"creation-date": "2019-10-21T22:02:18.432644",

"type": "groundtruth/object-detection"
}
}

Accessing the summary file and evaluation manifest snapshot (SDK)

To get training results, you call DescribeProjectVersions. For example code, see Describing a model
(SDK).

The location of the metrics is returned in the ProjectVersionDescription response from
DescribeProjectVersions.

e EvaluationResult - The location of the summary file.

« TestingDataResult - The location of the evaluation manifest snapshot used for testing.

The F1 score and summary file location are returned in EvaluationResult. For example:

"EvaluationResult": {
"F1Score": 1.0,
"Summary": {

"S30bject": {
"Bucket": "echo-dot-scans",
"Name": "test-output/EvaluationResultSummary-my-echo-dots-
project-v2.json"
}

The evaluation manifest snapshot is stored in the location specified in the --output-config
input parameter that you specified in Training a model (SDK).

(® Note

The amount of time, in seconds, that you are billed for training is returned in
BillableTrainingTimeInSeconds.

Accessing the summary file and evaluation manifest snapshot (SDK) 255

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

For information about the metrics that are returned by the Amazon Rekognition Custom Labels,
see Accessing Amazon Rekognition Custom Labels evaluation metrics (SDK).

Viewing the confusion matrix for a model

A confusion matrix allows you to see the labels that your model confuses with other labels in your
model. By using a confusion matrix, you can focus your improvements to the model.

During model evaluation, Amazon Rekognition Custom Labels create a confusion matrix by using
the test images to identify mis-identified (confused) labels. Amazon Rekognition Custom Labels
only creates a confusion matrix for classification models. The classification matrix is accessible from
the summary file that Amazon Rekognition Custom Labels creates during model training. You can't
view the confusion matrix in the Amazon Rekognition Custom Labels console.

Topics

» Using a confusion matrix

» Getting the confusion matrix for a model

Using a confusion matrix

The following table is the confusion matrix for the Rooms image classification example project.

Column headings are the labels (ground truth labels) assigned to the test images. Row headings are
the labels that the model predicts for the test images. Each cell is the percentage of predictions for
a label (row) that should be the ground truth label (column). For example, 67% of the predictions
for bathrooms were correctly labeled as bathrooms. 33% percent of bathrooms were incorrectly
labeled as kitchens. A high performing model has high cell values when the predicted label
matches the ground truth label. You can see these as a diagonal line from the first to last predicted
and ground truth labels. If a cell value is O, no predictions were made for the cell's predicted label
that should be the cell's ground truth label.

(@ Note

Since models are non-deterministic, the confusion matrix cell values you get from training
the Rooms project might differ from the following table.

The confusion matrix identifies areas to focus on. For example, the confusion matrix shows that
50% of the time the model confused closets for bedrooms. In this situation, you should add more

Viewing the confusion matrix for a model 256

Rekognition Custom Labels Guide

images of closets and bedrooms to your training dataset. Also check that the existing closet and
bedroom images are correctly labeled. This should help the model better distinguish between the
two labels. To add more images to a dataset, see Adding more images to a dataset.

While the confusion matrix is helpful, it's important to consider other metrics. For example, 100%
of the predictions correctly found the floor_plan label, which indicates excellent performance.
However, the test dataset only has 2 images with the floor_plan label. It also has 11 images with
the living_space label. This imbalance is also in the training dataset (13 living_space images and 2
closet images). To get a more accurate evaluation, balance the training and test datasets by adding
more images of under-represented labels (floor plans in this example). To get the number of test
images per label, see Accessing evaluation metrics (Console).

The following table is a sample confusion matrix, comparing the predicted label (on the y-axis)
against the ground truth label:

Predictedackyardathroorbedroonxloset entry_wdyoor_plafront_yakitchen living_sppatio
label n d ace
backyard75% 0% 0% 0% 0% 0% 33% 0% 0% 0%
bathroon®% 67% 0% 0% 0% 0% 0% 0% 0% 0%
bedroom0% 0% 82% 50% 0% 0% 0% 0% 9% 0%
closet 0% 0% 0% 50% 0% 0% 0% 0% 0% 0%
entry_wa@% 0% 0% 0% 33% 0% 0% 0% 0% 0%

floor_pla0% 0% 0% 0% 0% 100% 0% 0% 0% 0%
n

front_yar25% 0% 0% 0% 0% 0% 67% 0% 0% 0%
d

kitchen 0% 33% 0% 0% 0% 0% 0% 88% 0% 0%

living_sp 0% 0% 18% 0% 67% 0% 0% 12% 91% 33%
ace

patio 0% 0% 0% 0% 0% 0% 0% 0% 0% 67%

Viewing the confusion matrix for a model 257

Rekognition

Custom Labels Guide

Getting the confusion matrix for a model

The following code uses the DescribeProjects and DescribeProjectVersions operations to get the
summary file for a model. It then uses the summary file to display the confusion matrix for the

model.

To display the confusion matrix for a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more

information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following code to display the confusion matrix for a model. Supply the following

command line arguments:

« project_name —the name of the project you want to use. You can get the project name

from the projects page in the Amazon Rekognition Custom Labels console.

« version_name - the version of the model that you want to use. You can get the version

name from the project details page in the Amazon Rekognition Custom Labels console.

Copyright Amazon.com, Inc.
SPDX-License-Identifier: Apache-2.0

Purpose

or its affiliates. All Rights Reserved.

Shows how to display the confusion matrix for an Amazon Rekognition Custom labels

image

classification model.

import
import
import
import
import

from botocore.exceptions import ClientError

logger

json
argparse
logging
boto3

pandas as pd

= logging.getlLogger(__name__)

Viewing the confusion matrix for a model

258

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjects
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

def get_model_summary_location(rek_client, project_name, version_name):

Get the summary file location for a model.

:param rek_client: A Boto3 Rekognition client.

:param project_arn: The Amazon Resource Name (ARN) of the project that contains
the model.

:param model_arn: The Amazon Resource Name (ARN) of the model.

:return: The location of the model summary file.

try:
logger.info(
"Getting summary file for model %s in project %s.", version_name,
project_name)

summary_location = ""

Get the project ARN from the project name.
response = rek_client.describe_projects(ProjectNames=[project_name])

assert len(response['ProjectDescriptions']) > 0, \
f"Project {project_name} not found."

project_arn = response['ProjectDescriptions'][@]['ProjectArn']

Get the summary file location for the model.
describe_response =
rek_client.describe_project_versions(ProjectArn=project_arn,

VersionNames=[version_name])
assert len(describe_response['ProjectVersionDescriptions']) > 0, \
f"Model {version_name} not found."

model=describe_response['ProjectVersionDescriptions'][0]

evaluation_results=model['EvaluationResult']

summary_location=(f"s3://{evaluation_results['Summary']['S30bject"']
['Bucket']}"

f"/{evaluation_results['Summary']['S30bject']
['Name']}")

Viewing the confusion matrix for a model 259

Rekognition

Custom Labels Guide

return summary_location

except ClientError as err:
logger.exception(
"Couldn't get summary file location: %s

, err.response['Error']

['Message'])

def

def

raise

show_confusion_matrix(summary):

Shows the confusion matrix for an Amazon Rekognition Custom Labels
image classification model.

:param summary: The summary file JSON object.

pd.options.display.float_format = '{:.0%}'.format

Load the model summary JSON into a DataFrame.

summary_df = pd.DataFrame(
summary['AggregatedEvaluationResults']['ConfusionMatrix'])

Get the confusion matrix.

confusion_matrix = summary_df.pivot_table(index='PredictedLabel’,
columns="'GroundTruthLabel',
fill _value=0.0).astype(float)

Display the confusion matrix.
print(confusion_matrix)

get_summary(s3_resource, summary):
Gets the summary file.
return: The summary file in bytes.
try:
summary_bucket, summary_key = summary.replace(
"53://", "").Split("/", 1)

bucket = s3_resource.Bucket(summary_bucket)
obj = bucket.Object(summary_key)

body = obj.get()['Body'].read()
logger.info(

Viewing the confusion matrix for a model

260

Rekognition Custom Labels Guide

from bucket '%s'.",
obj.key, obj.bucket_name)
except ClientError:

)
%S

"Got summary file

logger.exception(
"Couldn't get summary file '%s' from bucket '%s'."
obj.key, obj.bucket_name)
raise
else:

’

return body

def add_arguments(parser):
Adds command line arguments to the parser.
param parser: The command line parser.

parser.add_argument(
"project_name", help="The ARN of the project in which the model resides."

)

parser.add_argument(
"version_name", help="The version of the model that you want to describe."

def main():

Entry point for script.

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get the command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(
f"Showing confusion matrix for: {args.version_name} for project
{args.project_name}.")

Viewing the confusion matrix for a model 261

Rekognition Custom Labels Guide

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")
s3_resource = session.resource('s3')

Get the summary file for the model.
summary_location = get_model_summary_location(rekognition_client,
args.project_name,
args.version_name
)

summary = json.loads(get_summary(s3_resource, summary_location))

Check that the confusion matrix is available.
assert 'ConfusionMatrix' in summary['AggregatedEvaluationResults'], \
"Confusion matrix not found in summary. Is the model a classification
model?"

Show the confusion matrix.
show_confusion_matrix(summary)
print("Done")

except ClientError as err:
logger.exception("Problem showing confusion matrix: %s'", err)
print(f"Problem describing model: {err}")

except AssertionError as err:
logger.exception(
"Error: %s.\n", err)
print(
f"Exrror: {err}\n")

if __name__ == "__main__":
main()

Reference: Training results summary file

The training results summary contains metrics you can use to evaluate your model. The summary
file is also used to display metrics in the console training results page. The summary file is stored in
an Amazon S3 bucket after training. To get the summary file, call DescribeProjectVersion. For
example code, see Accessing the summary file and evaluation manifest snapshot (SDK).

Reference: Summary File 262

Rekognition Custom Labels Guide

Summary file

The following JSON is the format of the summary file.

EvaluationDetails (section 3)

Overview information about the training task. This includes the ARN of the project that the
model belongs to (ProjectVersionArn), the date and time that training finished, the
version of the model that was evaluated (EvaluationEndTimestamp), and a list of labels
detected during training (Labels). Also included is the number of images used for training
(NumberOfTrainingImages) and evaluation (NumberOfTestingImages).

AggregatedEvaluationResults (section 1)

You can use AggregatedEvaluationResults to evaluate the overall performance of

the trained model when used with the testing dataset. Aggregated metrics are included for
Precision, Recall, and F1Score metrics. For object detection (the object location on an image),
AverageRecall (mAR) and AveragePrecision (mAP) metrics are returned. For classification
(the type of object in an image), a confusion matrix metric is returned.

LabelEvaluationResults (section 2)

You can use labelEvaluationResults to evaluate the performance of individual labels. The
labels are sorted by the F1 score of each label. The metrics included are Precision, Recall,
F1Score, and Threshold (used for classification).

The file name is formatted as follows: EvaluationSummary-ProjectName-
VersionName. json.

{
"Version": "integer",
// section-3
"EvaluationDetails": {

"ProjectVersionArn": "string",
"EvaluationEndTimestamp": "string",
"Labels": "[string]",
"NumberOfTrainingImages": "int",
"NumberOfTestingImages": "int"

}I

Reference: Summary File 263

Rekognition Custom Labels Guide

// section-1
"AggregatedEvaluationResults": {
"Metrics": {
"Precision": "float",
"Recall": "float",
"F1Score": "float",
// The following 2 fields are only applicable to object detection
"AveragePrecision": "float",
"AverageRecall": "float",
// The following field is only applicable to classification
"ConfusionMatrix":[

{
"GroundTruthLabel": "string",
"PredictedLabel": "string",
"Value": "float"

.

1,
}
.

// section-2
"LabelEvaluationResults": [

{
"Label": "string",
"NumberOfTestingImages", "int",
"Metrics": {
"Threshold": "float",
"Precision": "float",
"Recall": "float",
"F1Score": "float"
},
.

Improving an Amazon Rekognition Custom Labels model

The performance of machine learning models is largely dependent on factors such as the
complexity and variability of your custom labels (the specific objects and scenes that you're
interested in), the quality and representative power of the training dataset you provide, and the
model frameworks and machine learning methods used to train the model.

Improving a model 264

Rekognition Custom Labels Guide

Amazon Rekognition Custom Labels, makes this process simpler, and no machine learning expertise
is required. However, the process of building a good model often involves iterations over data and
model improvements to achieve desired performance. The following is information on how to
improve your model.

Data

In general, you can improve the quality of your model with larger quantities of better quality data.
Use training images that clearly show the object or scene and aren't cluttered with unneeded
items. For bounding boxes around objects, use training images that show the object fully visible
and not occluded by other objects.

Make sure that your training and test datasets match the type of images that you will eventually
run inference on. For objects, such as logos, where you have just a few training examples, you
should provide bounding boxes around the logo in your test images. These images represent or
depict the scenarios in which you want to localize the object.

To add more images to a training or test dataset, see Adding more images to a dataset.

Reducing false positives (better precision)

o First, check if increasing the assumed threshold lets you keep the correct predictions, while
decreasing false positives. At some point, this has diminishing gains because of the trade-off
between precision and recall for a given model. You can't set the assumed threshold for a label,
but you can achieve the same result by specifying a high value for the MinConfidence input
parameter to DetectCustomlLabels. For more information, see Analyzing an image with a

trained model.

« You might see one or more of your custom labels of interest (A) consistently get confused with
the same class of objects (but not a label that you're interested in) (B). To help, add B as an
object class label to your training dataset (along with the images that you got the false positive
on). Effectively, you're helping the model learn to predict B and not A through the new training
images. To add images to a training dataset, see Adding more images to a dataset.

« You might find that the model is confused by two of your custom labels (A and B)—the test
image with label A is predicted as having label B and vice versa. In that case, first check for
mislabeled images in your training and test sets. Use the dataset gallery to manage the labels
assigned to a dataset. For more information, see Managing labels. Also, adding more training

images related to this type of confusion will help a retrained model better discriminate between
A and B. To add images to a training dataset, see Adding more images to a dataset.

Data 265

Rekognition Custom Labels Guide

Reducing false negatives (better recall)

» Use a lower value for the assumed threshold. You can't set the assumed threshold for a label,
but you can achieve the same result by specifying a lower MinConfidence input parameter to
DetectCustomLabels. For more information, see Analyzing an image with a trained model.

» Use better examples to model the variety of both the object and the images in which they
appear.

« Split your label into two classes that are easier to learn. For example, instead of good cookies
and bad cookies, you might want good cookies, burnt cookies, and broken cookies to help the
model learn each unique concept better.

Reducing false negatives (better recall) 266

Rekognition Custom Labels Guide

Running a trained Amazon Rekognition Custom Labels
model

When you're satisfied with the performance of the model, you can start to use it. You can start
and stop a model by using the console or the AWS SDK. The console also includes example SDK
operations that you can use.

Topics

« Inference units

Availability Zones

Starting an Amazon Rekognition Custom Labels model

Stopping an Amazon Rekognition Custom Labels model

Reporting running duration and inference units used

Inference units

When you start your model, you specify the number of compute resources, known as an inference
unit, that the model uses.

/A Important

You are charged for the number of hours that your model is running and for the number

of inference units that your model uses while it's running, based on how you configure the
running of your model. For example, if you start the model with two inference units and
use the model for 8 hours, you are charged for 16 inference hours (8 hours running time *
two inference units). For more information, see Inference hours. If you don't explicitly stop
your model, you are charged even if you are not actively analyzing images with your model.

The transactions per second (TPS) that a single inference unit supports is affected by the following.

« A model that detects image-level labels (classification) generally has a higher TPS than a model
that detects and localizes objects with bounding boxes (object detection).

« The complexity of the model.

« A higher resolution image requires more time for analysis.

Inference units 267

https://aws.amazon.com/rekognition/pricing/#Amazon_Rekognition_Custom_Labels_pricing

Rekognition Custom Labels Guide

« More objects in an image requires more time for analysis.
« Smaller images are analyzed faster than larger images.

« Animage passed as image bytes is analyzed faster than first uploading the image to an Amazon
S3 bucket and then referencing the uploaded image. Images passed as image bytes must be
smaller than 4.0 MB. We recommend that you use image bytes for near real time processing of
images and when the image size is less that 4.0 MB. For example, images captured from an IP
camera.

« Processing images stored in an Amazon S3 bucket is faster than downloading the images,
converting to image bytes, and then passing the image bytes for analysis.

« Analyzing an image already stored in an Amazon S3 bucket is probably faster than analyzing the
same image passed as image bytes. That's especially true if the image size is larger.

If the number of calls to DetectCustomLabels exceeds the maximum TPS supported by
the sum of inference units that a model uses, Amazon Rekognition Custom Labels returns an
ProvisionedThroughputExceededException exception.

Managing throughput with inference units

You can increase or decrease the throughput of your model depending on the demands on your
application. To increase throughput, use additional inference units. Each additional inference
unit increases your processing speed by one inference unit. For information about calculating the
number of inference units that you need, see Calculate inference units for Amazon Rekognition

Custom Labels and Amazon Lookout for Vision models. If you want to change the supported
throughput of your model, you have two options:

Manually add or remove inference units

Stop the model and then restart with the required number of inference units. The disadvantage

with this approach is that the model can't receive requests while it's restarting and can't be used to
handle spikes in demand. Use this approach if your model has steady throughput and your use case
can tolerate 10-20 minutes of downtime. An example would be if you want to batch calls to your
model using a weekly schedule.

Auto-scale inference units

If your model has to accommodate spikes in demand, Amazon Rekognition Custom Labels can
automatically scale the number of inference units your model uses. As demand increases, Amazon

Managing throughput with inference units 268

https://aws.amazon.com/blogs/machine-learning/calculate-inference-units-for-an-amazon-rekognition-custom-labels-model/
https://aws.amazon.com/blogs/machine-learning/calculate-inference-units-for-an-amazon-rekognition-custom-labels-model/

Rekognition Custom Labels Guide

Rekognition Custom Labels adds additional inference units to the model and removes them when
demand decreases.

To let Amazon Rekognition Custom Labels automatically scale inference units for a model,

start the model and set the maximum number of inference units that it can use by using the
MaxInferenceUnits parameter. Setting a maximum number of inference units lets you manage
the cost of running the model by limiting the number of inference units available to it. If you don't
specify a maximum number of units, Amazon Rekognition Custom Labels won't automatically
scale your model, only using the number of inference units that you started with. For information
regarding the maximum number of inference units, see Service Quotas.

You can also specify a minimum number of inference units by using the MinInferenceUnits
parameter. This lets you specify the minimum throughput for your model, where a single inference
unit represents 1 hour of processing time.

(@ Note

You can't set the maximum number of inference units with the Amazon Rekognition
Custom Labels console. Instead, specify the MaxInferenceUnits input parameter to the
StartProjectVersion operation.

Amazon Rekognition Custom Labels provides the following Amazon CloudWatch Logs metrics that
you can use to determine the current automatic scaling status for a model.

Metric Description

DesiredInferenceUnits The number of inference units to which
Amazon Rekognition Custom Labels is scaling
up or down.

InServiceInferenceUnits The number of inference units that the model
is using.

If DesiredInferenceUnits = InServiceInferenceUnits, Amazon Rekognition Custom
Labels is not currently scaling the number of inference units.

Managing throughput with inference units 269

https://docs.aws.amazon.com/general/latest/gr/rekognition.html#limits_rekognition

Rekognition Custom Labels Guide

If DesiredInferenceUnits > InServiceInferenceUnits, Amazon Rekognition Custom
Labels is scaling up to the value of DesiredInferenceUnits.

If DesiredInferenceUnits < InServicelInferenceUnits, Amazon Rekognition Custom
Labels is scaling down to the value of DesiredInferenceUnits.

For more information regarding the metrics returned by Amazon Rekognition Custom Labels and
filtering dimensions, see CloudWatch metrics for Rekognition.

To find out the maximum number of inference units that you requested for a model, call
DescribeProjectsVersion and check the MaxInferenceUnits field in the response. For
example code, see Describing a model (SDK).

Availability Zones

Amazon Rekognition Custom Labels distributes inference units across multiple Availability Zones
within an AWS Region to provide increased availability. For more information, see Availability
Zones. To help protect your production models from Availability Zone outages and inference unit
failures, start your production models with at least two inference units.

If an Availability Zone outage occurs, all inference units in the Availability Zone are unavailable
and model capacity is reduced. Calls to DetectCustomLabels are redistributed across the remaining

inference units. Such calls succeed if they don’t exceed the supported Transactions Per Seconds
(TPS) of the remaining inference units. After AWS repairs the Availability Zone, the inference units
are restarted, and full capacity is restored.

If a single inference unit fails, Amazon Rekognition Custom Labels automatically starts a new
inference unit in the same Availability Zone. Model capacity is reduced until the new inference unit
starts.

Starting an Amazon Rekognition Custom Labels model

You can start running an Amazon Rekognition Custom Labels model by using the console or by
using the StartProjectVersion operation.

Availability Zones 270

https://docs.aws.amazon.com/rekognition/latest/dg/cloudwatch-metricsdim.html
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/#Availability_Zones
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/#Availability_Zones
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StartProjectVersion

Rekognition Custom Labels Guide

/A Important

You are charged for the number of hours that your model is running and for the number of
inference units that your model uses while it is running. For more information, see Running
a trained Amazon Rekognition Custom Labels model.

Starting a model might take a few minutes to complete. To check the current status of the model
readiness, check the details page for the project or use DescribeProjectVersions.

After the model is started you use DetectCustomLabels, to analyze images using the model.

For more information, see Analyzing an image with a trained model. The console also provides

example code to call DetectCustomLabels.

Topics

« Starting an Amazon Rekognition Custom Labels model (Console)

« Starting an Amazon Rekognition Custom Labels model (SDK)

Starting an Amazon Rekognition Custom Labels model (Console)

Use the following procedure to start running an Amazon Rekognition Custom Labels model with
the console. You can start the model directly from the console or use the AWS SDK code provided
by the console.

To start a model (console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Choose Use Custom Labels.

3. Choose Get started.

4. In the left navigation pane, choose Projects.

5. On the Projects resources page, choose the project that contains the trained model that you
want to start.

6. In the Models section, choose the model that you want to start.

7. Choose the Use model tab.

8. Do one of the following:

Starting or stopping a model (Console) 271

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels
https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

Start model using the console

In the Start or stop model section do the following:

1. Select the number of inference units that you want to use. For more information, see
Running a trained Amazon Rekognition Custom Labels model.

2. Choose Start.

3. In the Start model dialog box, choose Start.

Start model using the AWS SDK

In the Use your model section do the following:

1. Choose API Code.
2. Choose either AWS CLI or Python.
3. In Start model copy the example code.

4. Use the example code to start your model. For more information, see Starting an
Amazon Rekognition Custom Labels model (SDK).

9. To go back to the project overview page, choose your project name at the top of the page.

10. In the Model section, check the status of the model. When the model status is RUNNING, you
can use the model to analyze images. For more information, see Analyzing an image with a

trained model.

Starting an Amazon Rekognition Custom Labels model (SDK)

You start a model by calling the StartProjectVersion APl and passing the Amazon Resource Name
(ARN) of the model in the ProjectVersionArn input parameter. You also specify the number
of inference units that you want to use. For more information, see Running a trained Amazon
Rekognition Custom Labels model.

A model might take a while to start. The Python and Java examples in this topic use waiters to
wait for the model to start. A waiter is a utility method that polls for a particular state to occur.
Alternatively, you can check the current status by calling DescribeProjectVersions.

Starting a model (SDK) 272

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StartProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

To start a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to start a model.

CLI

Change the value of project-version-arn to the ARN of the model that you want

to start. Change the value of --min-inference-units to the number of inference
units that you want to use. Optionally, change --max-inference-units to the
maximum number of inference units that Amazon Rekognition Custom Labels can use to
automatically scale the model.

aws rekognition start-project-version --project-version-arn model_arn \
--min-inference-units minimum number of units \
--max-inference-units maximum number of units \
--profile custom-labels-access

Python

Supply the following command line parameters:

project_arn - the ARN of the project that contains the model that you want to start.
« model_arn -the ARN of the model that you want to start.

« min_inference_units - the number of inference units that you want to use.

(Optional) --max_inference_units The maximum number of inference units that
Amazon Rekognition Custom Labels can use to auto-scale the model.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose
Shows how to start running an Amazon Lookout for Vision model.

import argparse

Starting a model (SDK) 273

Rekognition

Custom Labels Guide

import logging
import boto3
from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def get_model_status(rek_client, project_arn, model_arn):

Gets the current status of an Amazon Rekognition Custom Labels model
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_name: The name of the project that you want to use.
:param model_arn: The name of the model that you want the status for.
:return: The model status

logger.info("Getting status for %s.", model_arn)

Extract the model version from the model arn.
version_name = (model_arn.split("version/", 1)[1]).rpartition('/')[0]

models = rek_client.describe_project_versions(ProjectArn=project_azrn,
VersionNames=[version_name])

for model in models['ProjectVersionDescriptions']:

logger.info("Status: %s", model['StatusMessage'])
return model["Status"]

error_message = f"Model {model_arn} not found."
logger.exception(error_message)
raise Exception(error_message)

def start_model(rek_client, project_arn, model_arn, min_inference_units,
max_inference_units=None):

Starts the hosting of an Amazon Rekognition Custom Labels model.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_name: The name of the project that contains the
model that you want to start hosting.

:param min_inference_units: The number of inference units to use for

hosting.

Starting a model (SDK)

274

Rekognition Custom Labels Guide

:param max_inference_units: The number of inference units to use for auto-
scaling

the model. If not supplied, auto-scaling does not happen.

try:
Start the model
logger.info(f"Starting model: {model_arn}. Please wait....")

if max_inference_units is None:
rek_client.start_project_version(ProjectVersionArn=model_azrn,

MinInferenceUnits=int(min_inference_units))
else:
rek_client.start_project_version(ProjectVersionArn=model_azrn,
MinInferenceUnits=int(
min_inference_units),

MaxInferenceUnits=int(max_inference_units))

Wait for the model to be in the running state
version_name = (model_arn.split("version/", 1)[1]).rpartition('/')[@]
project_version_running_waiter = rek_client.get_waiter(
'project_version_running')
project_version_running_waiter.wait(
ProjectArn=project_arn, VersionNames=[version_name])

Get the running status
return get_model_status(rek_client, project_arn, model_arn)

except ClientError as err:
logger.exception("Client error: Problem starting model: %s", err)
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(

"project_arn", help="The ARN of the project that contains that the model
you want to start."

Starting a model (SDK) 275

Rekognition Custom Labels Guide

)
parser.add_argument(
"model_arn", help="The ARN of the model that you want to start."

)

parser.add_argument(
"min_inference_units", help="The minimum number of inference units to
use."
)
parser.add_argument(
"--max_inference_units", help="The maximum number of inference units to
use for auto-scaling the model.", required=False

)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

Start the model.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

status = start_model(rekognition_client,
args.project_arn, args.model_arn,
args.min_inference_units,
args.max_inference_units)

print(f"Finished starting model: {args.model_arn}")
print(f"Status: {status}")

except ClientError as err:
error_message = f"Client error: Problem starting model: {err}"
logger.exception(error_message)
print(error_message)

except Exception as err:

Starting a model (SDK) 276

Rekognition Custom Labels Guide

error_message = f"Problem starting model:{err}"
logger.exception(error_message)
print(error_message)

if __name__ == "__main__":
main()

Java V2

Supply the following command line parameters:

« project_arn - the ARN of the project that contains the model that you want to start.
« model_arn - the ARN of the model that you want to start.
« min_inference_units - the number of inference units that you want to use.

o (Optional)max_inference_units - the maximum number of inference units that
Amazon Rekognition Custom Labels can use to automatically scale the model. If you
don't specify a value, automatic scaling doesn't happen.

/~k
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.core.waiters.WaiterResponse;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsResponse;

import
software.amazon.awssdk.services.rekognition.model.ProjectVersionDescription;

import software.amazon.awssdk.services.rekognition.model.ProjectVersionStatus;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import
software.amazon.awssdk.services.rekognition.model.StartProjectVersionRequest;

import
software.amazon.awssdk.services.rekognition.model.StartProjectVersionResponse;

Starting a model (SDK) 277

Rekognition

Custom Labels Guide

import software.amazon.awssdk.services.rekognition.waiters.RekognitionWaiter;

import java.util.Optional;
import java.util.logging.Level;
import java.util.logging.Logger;

public class StartModel {

public static final Logger logger =
Logger.getLogger(StartModel.class.getName());

public static int findForwardSlash(String modelArn, int n) {

int start = modelArn.indexOf('/');

while (start >= 0 & n > 1) {
start = modelArn.indexOf('/', start + 1);
n-=1;

}

return start;

public static void startMyModel(RekognitionClient rekClient, String
projectArn, String modelArn,
Integer minInferenceUnits, Integer maxInferenceUnits
) throws Exception, RekognitionException {

try {
logger.log(Level.INFO, "Starting model: {@3}", modelArn);
StartProjectVersionRequest startProjectVersionRequest = null;

if (maxInferenceUnits == null) {
startProjectVersionRequest =
StartProjectVersionRequest.builder()
.projectVersionArn(modelArn)
.minInferenceUnits(minInferenceUnits)
.build();

else {

Starting a model (SDK)

278

Rekognition Custom Labels Guide

startProjectVersionRequest =
StartProjectVersionRequest.builder()
.projectVersionArn(modelArn)
.minInferenceUnits(minInferenceUnits)
.maxInferenceUnits(maxInferenceUnits)
.build();

StartProjectVersionResponse response =
rekClient.startProjectVersion(startProjectVersionRequest);

logger.log(Level .INFO, "Status: {@}", response.statusAsString());

// Get the model version

int start = findForwardSlash(modelArn, 3) + 1;
int end = findForwardSlash(modelArn, 4);

String versionName = modelArn.substring(start, end);

// wait until model starts

DescribeProjectVersionsRequest describeProjectVersionsRequest =
DescribeProjectVersionsRequest.builder()
.versionNames(versionName)
.projectArn(projectArn)
.build();

RekognitionWaiter waiter = rekClient.waiter();

WaiterResponse<DescribeProjectVersionsResponse> waiterResponse =
waiter

.waitUntilProjectVersionRunning(describeProjectVersionsRequest);

Optional<DescribeProjectVersionsResponse> optionalResponse =
waiterResponse.matched().response();

DescribeProjectVersionsResponse describeProjectVersionsResponse =
optionalResponse.get();

Starting a model (SDK) 279

Rekognition Custom Labels Guide

for (ProjectVersionDescription projectVersionDescription :
describeProjectVersionsResponse
.projectVersionDescriptions()) {
if(projectVersionDescription.status() ==
ProjectVersionStatus.RUNNING) {
logger.log(Level.INFO, "Model is running");

}
else {
String error = "Model training failed: " +
projectVersionDescription.statusAsString() + " "
+ projectVersionDescription.statusMessage() + " " +
modelArn;
logger.log(Level .SEVERE, error);
throw new Exception(error);

} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not start model: {@}",
e.getMessage());
throw e;

public static void main(String[] args) {

String modelArn = null;
String projectArn = null;

Integer minInferenceUnits = null;
Integer maxInferenceUnits = null;
final String USAGE = "\n" + "Usage: " + '"<project_name> <version_name>
<min_inference_units> <max_inference_units>\n\n" + "Where:\n"
+ " project_arn - The ARN of the project that contains the
model that you want to start. \n\n"
+ " model_arn - The ARN of the model version that you want to
start.\n\n"

Starting a model (SDK) 280

Rekognition Custom Labels Guide

+ " min_inference_units - The number of inference units to
start the model with.\n\n"

+ " max_inference_units - The maximum number of inference
units that Custom Labels can use to "

+ " automatically scale the model. If the value is null,

automatic scaling doesn't happen.\n\n";

if (args.length < 3 || args.length >4) {
System.out.println(USAGE);
System.exit(1l);

projectArn = args[0];
modelArn = args[1];
minInferenceUnits=Integer.parselnt(args[2]);

if (args.length == 4) {
maxInferenceUnits = Integer.parselnt(args[3]);

try {

// Get the Rekognition client.

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Start the model.
startMyModel(rekClient, projectArn, modelArn, minInferenceUnits,
maxInferenceUnits);

System.out.println(String.format("Model started: %s", modelArn));
rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);
} catch (Exception rekError) {

Starting a model (SDK) 281

Rekognition Custom Labels Guide

logger.log(Level .SEVERE, "Error: {@}", rekError.getMessage());
System.exit(1l);

Stopping an Amazon Rekognition Custom Labels model

You can stop running an Amazon Rekognition Custom Labels model by using the console or by
using the StopProjectVersion operation.

Topics

» Stopping an Amazon Rekognition Custom Labels model (Console)

« Stopping an Amazon Rekognition Custom Labels model (SDK)

Stopping an Amazon Rekognition Custom Labels model (Console)

Use the following procedure to stop a running Amazon Rekognition Custom Labels model with the
console. You can stop the model directly from the console or use the AWS SDK code provided by
the console.

To stop a model (console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Choose Use Custom Labels.

3. Choose Get started.

4. In the left navigation pane, choose Projects.

5. On the Projects resources page, choose the project that contains the trained model that you
want to stop.

6. In the Models section, choose the model that you want to stop.

7. Choose the Use model tab.

Stopping a model 282

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StopProjectVersion
https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

8. Stop model using the console

1. In the Start or stop model section, choose Stop.
2. In the Stop model dialog box, enter stop to confirm that you want to stop the model.

3. Choose Stop to stop your model.

Stop model using the AWS SDK

In the Use your model section do the following:

1. Choose API Code.
2. Choose either AWS CLI or Python.
3. In Stop model copy the example code.

4. Use the example code to stop your model. For more information, see Stopping an
Amazon Rekognition Custom Labels model (SDK).

9. Choose your project name at the top of the page to go back to the project overview page.

10. In the Model section, check the status of the model. The model has stopped when the model
status is STOPPED.

Stopping an Amazon Rekognition Custom Labels model (SDK)

You stop a model by calling the StopProjectVersion API and passing the Amazon Resource Name
(ARN) of the model in the ProjectVersionArn input parameter.

A model might take a while to stop. To check the current status, use DescribeProjectVersions.
To stop a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to stop a running model.

CLI

Change the value of project-version-arn to the ARN of the model version that you
want to stop.

Stopping a model (SDK) 283

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StopProjectVersion

Rekognition Custom Labels Guide

aws rekognition stop-project-version --project-version-arn "model arn" \
--profile custom-labels-access

Python
The following example stops a model that is already running.

Supply the following command line parameters:

« project_arn -the ARN of the project that contains the model that you want to stop.

« model_arn - the ARN of the model that you want to stop.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose
Shows how to stop a running Amazon Lookout for Vision model.

import argparse
import logging
import time
import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def get_model_status(rek_client, project_arn, model_arn):
Gets the current status of an Amazon Rekognition Custom Labels model
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_name: The name of the project that you want to use.
:param model_arn: The name of the model that you want the status for.

logger.info ("Getting status for %s.", model_arn)

Stopping a model (SDK) 284

Rekognition Custom Labels Guide

Extract the model version from the model arn.
version_name=(model_arn.split("version/",1)[1]).rpartition('/"')[0]

Get the model status.
models=rek_client.describe_project_versions(ProjectArn=project_arn,
VersionNames=[version_name])

for model in models['ProjectVersionDescriptions']:
logger.info("Status: %s",model['StatusMessage'])
return model["Status"]

No model found.
logger.exception("Model %s not found.", model_arn)
raise Exception("Model %s not found.", model_arn)

def stop_model(rek_client, project_arn, model_arn):
Stops a running Amazon Rekognition Custom Labels Model.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_arn: The ARN of the project that you want to stop running.
:param model_arn: The ARN of the model (ProjectVersion) that you want to
stop running.

logger.info("Stopping model: %s", model_arn)
try:
Stop the model.
response=rek_client.stop_project_version(ProjectVersionArn=model_arn)
logger.info("Status: %s", response['Status'])
stops when hosting has stopped or failure.
status = ""
finished = False
while finished is False:
status=get_model_status(rek_client, project_arn, model_azrn)
if status == "STOPPING":

logger.info("Model stopping in progress...")
time.sleep(10)

Stopping a model (SDK) 285

Rekognition Custom Labels Guide

continue

if status == "STOPPED":
logger.info("Model is not running.")
finished = True
continue

error_message = f"Error stopping model. Unexepected state: {status}"
logger.exception(error_message)
raise Exception(error_message)

logger.info("finished. Status %s", status)
return status

except ClientError as err:
logger.exception("Couldn't stop model -
model_arn,err.response['Error']['Message'])
raise

[[n
%s: %s",

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The ARN of the project that contains the model that
you want to stop."
)
parser.add_argument(
"model_arn", help="The ARN of the model that you want to stop."

def main():
logging.basicConfig(level=1logging.INFO, format="%(levelname)s: %(message)s")
try:
Get command line arguments.
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)

add_arguments(parser)
args = parser.parse_args()

Stopping a model (SDK) 286

Rekognition Custom Labels Guide

Stop the model.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

status=stop_model(rekognition_client, args.project_arn, args.model_arn)

print(f"Finished stopping model: {args.model_arn}")
print(f"Status: {status}")

except ClientError as err:
logger.exception("Problem stopping model:%s",err)
print(f"Failed to stop model: {err}")

except Exception as err:
logger.exception("Problem stopping model:%s", err)
print(f"Failed to stop model: {err}")
if __name__ == "__main__":
main()

Java V2

Supply the following command line parameters:

e project_arn - the ARN of the project that contains the model that you want to stop.

« model_arn - the ARN of the model that you want to stop.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsResponse;

Stopping a model (SDK) 287

Rekognition Custom Labels Guide

import
software.amazon.awssdk.services.rekognition.model.ProjectVersionDescription;
import software.amazon.awssdk.services.rekognition.model.ProjectVersionStatus;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;
import
software.amazon.awssdk.services.rekognition.model.StopProjectVersionRequest;
import
software.amazon.awssdk.services.rekognition.model.StopProjectVersionResponse;

import java.util.logging.Level;
import java.util.logging.Logger;

public class StopModel {

public static final Logger logger =
Logger.getlLogger(StopModel.class.getName());

public static int findForwardSlash(String modelArn, int n) {

int start = modelArn.indexOf('/');

while (start >= 0 & n > 1) {
start = modelArn.indexOf('/', start + 1);
n -=1;

}

return start;

public static void stopMyModel(RekognitionClient rekClient, String
projectArn, String modelArn)
throws Exception, RekognitionException {

try {
logger.log(Level.INFO, "Stopping {@3}", modelArn);
StopProjectVersionRequest stopProjectVersionRequest =
StopProjectVersionRequest.builder()

.projectVersionArn(modelArn).build();

StopProjectVersionResponse response =
rekClient.stopProjectVersion(stopProjectVersionRequest);

Stopping a model (SDK)

288

Rekognition Custom Labels Guide

logger.log(Level.INFO, "Status: {@}", response.statusAsString());
// Get the model version

int start = findForwardSlash(modelArn, 3) + 1;
int end = findForwardSlash(modelArn, 4);

String versionName = modelArn.substring(start, end);
// wait until model stops
DescribeProjectVersionsRequest describeProjectVersionsRequest =
DescribeProjectVersionsRequest.builder()
.projectArn(projectArn).versionNames(versionName).build();
boolean stopped = false;

// Wait until create finishes

do {

DescribeProjectVersionsResponse describeProjectVersionsResponse

= rekClient
.describeProjectVersions(describeProjectVersionsRequest);

for (ProjectVersionDescription projectVersionDescription :
describeProjectVersionsResponse

.projectVersionDescriptions()) {

ProjectVersionStatus status =
projectVersionDescription.status();

logger.log(Level.INFO, "stopping model: {@} ", modelArn);
switch (status) {
case STOPPED:

logger.log(Level.INFO, "Model stopped");

stopped = true;

break;

case STOPPING:
Thread.sleep(5000);

Stopping a model (SDK)

289

Rekognition Custom Labels Guide

break;

case FAILED:
String error = "Model stopping failed: " +
projectVersionDescription.statusAsString() + " "
+ projectVersionDescription.statusMessage() + "
" + modelArn;
logger.log(Level .SEVERE, error);
throw new Exception(error);

default:
String unexpectedError = "Unexpected stopping state: "
+ projectVersionDescription.statusAsString() + "

+ projectVersionDescription.statusMessage() + "
" + modelArn;

logger.log(Level .SEVERE, unexpectedError);
throw new Exception(unexpectedError);

} while (stopped == false);

} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not stop model: {0@}",
e.getMessage());
throw e;

public static void main(String[] args) {

String modelArn = null;
String projectArn = null;

final String USAGE = "\n" + "Usage: " + "<project_name> <version_name>\n
\n" + "Where:\n"
+ " project_arn - The ARN of the project that contains the
model that you want to stop. \n\n"
+ " model_arn - The ARN of the model version that you want to
stop.\n\n";

Stopping a model (SDK) 290

Rekognition Custom Labels Guide

if (args.length != 2) {
System.out.println(USAGE);
System.exit(1l);

projectArn = args[0];
modelArn = args[1];

try {

// Get the Rekognition client.

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Stop model
stopMyModel(rekClient, projectArn, modelArn);

System.out.println(String.format("Model stopped: %s", modelArn));
rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);
} catch (Exception rekError) {
logger.log(Level .SEVERE, "Error: {0}", rekError.getMessage());
System.exit(1l);

Stopping a model (SDK) 291

Rekognition Custom Labels Guide

Reporting running duration and inference units used

If you trained and started your model after August 2022, you can use the
InServiceInferenceUnits Amazon CloudWatch metric to determine how many hours a model
has run for and the number of inference units used during those hours.

(@ Note

If you only have one model in an AWS region, you can also get the running time for the
model by tracking successful calls to StartprojectVersion and StopProjectVersion
in CloudWatch. This approach doesn't work if you run more that one model in the AWS
Region as the metrics don't include information about the model.

Alternatively, you can use AWS CloudTrail to track calls to StartProjectVersion and
StopProjectVersion (which includes the model ARN in the requestParameters field
of the event history). CloudTrail events are limited to 90 days, but you can store events for
up to 7 years in a CloudTrail Lake.

The following procedure creates graphs for the following:

e The number of hours that a model has run for.

e The number of inference units that a model has used.

You can choose a time period up to 15 months in the past. For more information about metric
retention, see Metrics retention.

To determine model duration and inference units used for a model

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

In the left navigation pane, choose All metrics under Metrics.
In the content pane, choose the Source tab.

Make sure that the Dashboard button is selected.

i A W

In the edit box, replace the existing JSON with the following JSON. Change the following
values:

« Project_Name — The project that contains the model that you want to graph.

Reporting duration and inference units 292

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html?icmpid=docs_console_unmapped
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#metrics-retention
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

Rekognition

Custom Labels Guide

« Version_Name — The version of the model that you want to graph.

« AWS_Region — The AWS Region that contains the model. Make sure that the CloudWatch
console is in the same AWS Region, by checking the Region selector in the navigation bar at

the top of the page. Update as necessary.

"sparkline": true,
"metrics": [

[
{
"expression": "SUM(ml)*ml",
"label": "Inference units used",
"id": "el"
}
1,
[
{
"expression": "DATAPOINT_COUNT(m1)*ml/ml",
"label": "Hours running",
"id": "e2"
}
1,
[
"AWS/Rekognition",
"InServiceInferenceUnits",
"ProjectName",
"Project_Name",
"VersionName",
"Version_Name",
{
"id": "ml",
"visible": false
}
]
1,
"view": "singleValue",
"stacked": false,
"region": "AWS_Region",
"stat": "Average",
"period": 3600,
"title": "Hours run and inference units used"

Reporting duration and inference units

293

Rekognition Custom Labels Guide

}

6. Choose Update.

7. At the top of the page, choose a timeline. You should see numbers for inference units used and
hours running during the timeline. Gaps in the graph indicate times when the model wasn't
running. The screenshot of the console below showing inference units used and hours running
over time periods, with a custom time of 2 weeks set, with the highest values of 214 inference
units and 209 hours running.

CloudWatch Metrics

Hours run and inference units used 4 1w Custom (2w) Number v Actions v || C l v I
@ Inference units used Hours running
Browse uer Graphed metrics (2/3 Options Source
ey P @/3) P ure [Add math v ’ ‘ Add query Vv

View : O Dashboard Image APl @ Minimize source @ Copy
1-4
2 "sparkline":
3~ "metrics": [
4 [{ "expression": "SUM(ml)*ml", "label": "Inference units used", "id": "el" }],
5 [{ "expression": "DATAPOINT_COUNT(m1)*ml1/ml", "label": "Hours running", "id": "e2" } 1],

8. (Optional) Add the graph to a dashboard by choosing Actions and then Add to dashboard -
improved.

Reporting duration and inference units 294

Rekognition Custom Labels Guide

Analyzing an image with a trained model

To analyze an image with a trained Amazon Rekognition Custom Labels model, you call the
DetectCustomLabels API. The result from DetectCustomLabels is a prediction that the image

contains specific objects, scenes, or concepts.

To call DetectCustomLabels, you specify the following:
« The Amazon Resource Name (ARN) of the Amazon Rekognition Custom Labels model that you
want to use.

« The image that you want the model to make a prediction with. You can provide an input image
as an image byte array (base64-encoded image bytes), or as an Amazon S3 object. For more
information, see Image.

Custom labels are returned in an array of Custom Label objects. Each custom label represents a

single object, scene, or concept found in the image. A custom label includes:

« A label for the object, scene, or concept found in the image.

« A bounding box for objects found in the image. The bounding box coordinates show where the
object is located on the source image. The coordinate values are a ratio of the overall image size.
For more information, see BoundingBox. DetectCustomLabels returns bounding boxes only if

the model is trained to detect object locations.

« The confidence that Amazon Rekognition Custom Labels has in the accuracy of the label and
bounding box.

To filter labels based on the detection confidence, specify a value for MinConfidence that
matches your desired confidence level. For example, if you need to be very confident of the
prediction, specify a high value for MinConfidence. To get all labels, regardless of confidence,
specify a MinConfidence value of 0.

The performance of your model is measured, in part, by the recall and precision metrics calculated
during model training. For more information, see Metrics for evaluating your model.

To increase the precision of your model, set a higher value for MinConfidence. For more
information, see Reducing false positives (better precision).

295

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_Image
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CustomLabel
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_BoundingBox

Rekognition Custom Labels Guide

To increase the recall of your model, use a lower value for MinConfidence. For more information,
see Reducing false negatives (better recall).

If you don't specify a value for MinConfidence, Amazon Rekognition Custom Labels returns a
label based on the assumed threshold for that label. For more information, see Assumed threshold.
You can get the value of the assumed threshold for a label from the model's training results. For
more information, see Training a model (Console).

By using the MinConfidence input parameter, you are specifying a desired threshold for the
call. Labels detected with a confidence below the value of MinConfidence aren't returned in the
response. Also, the assumed threshold for a label doesn't affect the inclusion of the label in the
response.

(® Note

Amazon Rekognition Custom Labels metrics express an assumed threshold as a floating
point value between 0-1. The range of MinConfidence normalizes the threshold to

a percentage value (0-100). Confidence responses from DetectCustomLabels are also
returned as a percentage.

You might want to specify a threshold for specific labels. For example, when the precision
metric is acceptable for Label A, but not for Label B. When specifying a different threshold
(MinConfidence), consider the following.

« If you're only interested in a single label (A), set the value of MinConfidence to the desired
threshold value. In the response, predictions for label A are returned (along with other labels)
only if the confidence is greater than MinConfidence. You need to filter out any other labels
that are returned.

« If you want to apply different thresholds to multiple labels, do the following:

1. Use a value of O for MinConfidence. A value O ensures that all labels are returned, regardless
of the detection confidence.

2. For each label returned, apply the desired threshold by checking that the label confidence is
greater than the threshold that you want for the label.

For more information, see Improving a trained Amazon Rekognition Custom Labels model.

296

Rekognition Custom Labels Guide

If you're finding the confidence values returned by DetectCustomLabels are too low, consider
retraining the model. For more information, see Training an Amazon Rekognition Custom Labels

model. You can restrict the number of custom labels returned from DetectCustomLabels by
specifying the MaxResults input parameter. The results are returned sorted from the highest
confidence to the lowest.

For other examples that call DetectCustomLabels, see Custom Labels Examples.

For information about securing DetectCustomLabels, see Securing DetectCustomLabels.

To detect custom labels (API)
1. If you haven't already:

a. Make sure you have DetectCustomLabels and AmazonS3ReadOnlyAccess
permissions. For more information, see Set up SDK permissions.

b. Install and configure the AWS CLI and the AWS SDKs. For more information, see Step 4:
Set up the AWS CLI and AWS SDKs.

2. Train and deploy your model. For more information, see Creating an Amazon Rekognition
Custom Labels model.

3. Ensure the user calling DetectCustomLabels has access to the model you used in step 2. For
more information, see Securing DetectCustomLabels.

4. Upload an image that you want to analyze to an S3 bucket.

For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service

User Guide. The Python, Java, and Java 2 examples also show you how to use a local image file
to pass an image by using raw bytes. The file must be smaller than 4 MB.

5. Use the following examples to call the DetectCustomLabels operation. The Python and Java
examples show the image and overlay the analysis results, similar to the following image. The
following images contains bounding boxes and labels for a circuit board with a potentiometer,
infrared phototransistor, and LED components.

297

https://docs.aws.amazon.com/AmazonS3/latest/userguide/UploadingObjectsintoAmazonS3.html

Rekognition Custom Labels Guide

o S e S
+1.‘“ == : & Ew@

P

[
e
1140

(=1

=l
)=

&

O
4
—f
0
Z |
g
0

:

AWS CLI

This AWS CLI command displays the JSON output for the DetectCustomLabels CLI
operation. Change the values of the following input parameters.

« bucket with the name of Amazon S3 bucket that you used in step 4.

« image with the name of the input image file you uploaded in step 4.

« projectVersionArn with the ARN of the model that you want to use.

aws rekognition detect-custom-labels --project-version-arn model_arn \
--image '{"S30bject":{"Bucket":"bucket","Name":"image"}}"' \
--min-confidence 70 \
--profile custom-labels-access

Python

The following example code displays bounding boxes and image level labels found in an

image.

To analyze a local image, run the program and supply the following command line

arguments:

298

Rekognition Custom Labels Guide

« The ARN of the model with which you want to analyze the image.

« The name and location of a local image file.

To analyze an image stored in an Amazon S3 bucket, run the program and supply the
following command line arguments:

« The ARN of the model with which you want to analyze the image.
« The name and location of an image within the Amazon S3 bucket that you used in step 4.

e --bucket bucket name — The Amazon S3 bucket that you used in step 4.

Note that this example assumes that your version of Pillow is >= 8.0.0.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.

SPDX-License-Identifier: Apache-2.0

Purpose

Amazon Rekognition Custom Labels detection example used in the service
documentation:
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/detecting-custom-

labels.html

Shows how to detect custom labels by using an Amazon Rekognition Custom Labels
model.

The image can be stored on your local computer or in an Amazon S3 bucket.

import io

import logging

import argparse

import boto3

from PIL import Image, ImageDraw, ImageFont

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def analyze_local_image(rek_client, model, photo, min_confidence):

Analyzes an image stored as a local file.
:param rek_client: The Amazon Rekognition Boto3 client.

299

Rekognition Custom Labels Guide

:param s3_connection: The Amazon S3 Boto3 S3 connection object.

:param model: The ARN of the Amazon Rekognition Custom Labels model that you
want to use.

:param photo: The name and file path of the photo that you want to analyze.

:param min_confidence: The desired threshold/confidence for the call.

try:
logger.info("Analyzing local file: %s", photo)
image = Image.open(photo)
image_type = Image.MIME[image.format]
if (image_type == "image/jpeg" or image_type == "image/png") is False:
logger.error("Invalid image type for %s", photo)
raise ValueError(
f"Invalid file format. Supply a jpeg or png format file:
{photo}"

get images bytes for call to detect_anomalies
image_bytes = io.BytesIO()
image.save(image_bytes, format=image.format)
image_bytes = image_bytes.getvalue()

response = rek_client.detect_custom_labels(Image={'Bytes': image_bytes},
MinConfidence=min_confidence,
ProjectVersionArn=model)

show_image(image, response)
return len(response['CustomLabels'])

except ClientError as client_err:
logger.error(format(client_err))
raise

except FileNotFoundError as file_error:
logger.error(format(file_error))
raise

def analyze_s3_image(rek_client, s3_connection, model, bucket, photo,
min_confidence):

Analyzes an image stored in the specified S3 bucket.

:param rek_client: The Amazon Rekognition Boto3 client.

300

Rekognition Custom Labels Guide

:param s3_connection: The Amazon S3 Boto3 S3 connection object.

:param model: The ARN of the Amazon Rekognition Custom Labels model that you
want to use.

:param bucket: The name of the S3 bucket that contains the image that you
want to analyze.

:param photo: The name of the photo that you want to analyze.

:param min_confidence: The desired threshold/confidence for the call.

try:
Get image from S3 bucket.
logger.info("analyzing bucket: %s image: %s", bucket, photo)
s3_object = s3_connection.Object(bucket, photo)
s3_response = s3_object.get()
stream = io.BytesIO(s3_response['Body'].read())
image = Image.open(stream)
image_type = Image.MIME[image.format]
if (image_type == "image/jpeg" or image_type == "image/png") is False:
logger.error("Invalid image type for %s", photo)
raise ValueError(
f"Invalid file format. Supply a jpeg or png format file:
{photo}")

ImageDraw.Draw(image)

Call DetectCustomlLabels.

response = rek_client.detect_custom_labels(
Image={'S30bject': {'Bucket': bucket, 'Name': photo}},
MinConfidence=min_confidence,
ProjectVersionArn=model)

show_image(image, response)
return len(response['CustomLabels'])

except ClientError as err:

logger.error(format(err))
raise

def show_image(image, response):

301

Rekognition

Custom Labels Guide

Displays the analyzed image and overlays analysis results
:param image: The analyzed image
:param response: the response from DetectCustomlLabels
try:

font_size = 40

line_width =5

img_width, img_height = image.size
draw = ImageDraw.Draw(image)

Calculate and display bounding boxes for each detected custom label.
image_level_label_height = @

for custom_label in response['CustomLabels']:
confidence int(round(custom_label['Confidence'], 0))
label_text = f"{custom_label['Name']}:{confidence}%"
fnt = ImageFont.truetype('Tahoma.ttf', font_size)
text_left, text_top, text_right, text_bottom = draw.textbbox((0, 0),
label_text, fnt)
text_width, text_height = text_right - text_left, text_bottom -

text_top

logger.info("Label: %s", custom_label['Name'])
logger.info("Confidence: %s", confidence)

Draw bounding boxes, if present
if 'Geometry' in custom_label:
box = custom_label['Geometry']['BoundingBox"']
left = img_width * box['Left']
top = img_height * box['Top']
width = img_width * box['Width']
height = img_height * box['Height']

logger.info("Bounding box")

logger.info("\tLeft: {0:.0f}".format(left))
logger.info("\tTop: {0:.0f}".format(top))
logger.info("\tLabel Width: {0:.0f}".format(width))
logger.info("\tLabel Height: {0:.0f}".format(height))

points = (
(left, top),
(left + width, top),

302

Rekognition Custom Labels Guide

(left + width, top + height),
(left, top + height),
(left, top))
Draw bounding box and label text
draw.line(points, fill="limegreen", width=line_width)
draw.rectangle([(left + line_width, top+line_width),
(left + text_width + line_width, top +
line_width + text_height)], fill="black")
draw.text((left + line_width, top + line_width),
label_text, fill="limegreen", font=fnt)

draw image-level label text.
else:
draw.rectangle([(1@, image_level_label_height),
(text_width + 10, image_level_label_height
+text_height)], fill="black")
draw.text((10, image_level_label_height),
label_text, fill="limegreen", font=fnt)

image_level_label_height += text_height
image.show()

except Exception as err:
logger.error(format(err))
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"model_arn", help="The ARN of the model that you want to use."

parser.add_argument(
"image", help="The path and file name of the image that you want to
analyze"

)

parser.add_argument(

303

Rekognition Custom Labels Guide

"--bucket", help="The bucket that contains the image. If not supplied,
image is assumed to be a local file.", required=False

)

def main():

try:
logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

label_count = 0
min_confidence = 50

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

if args.bucket is None:
Analyze local image.
label_count = analyze_local_image(rekognition_client,
args.model_azrn,
args.image,
min_confidence)
else:
Analyze image in S3 bucket.
s3_connection = session.resource('s3"')
label_count = analyze_s3_image(rekognition_client,
s3_connection,
args.model_azrn,
args.bucket,
args.image,
min_confidence)

print(f"Custom labels detected: {label_count}")
except ClientError as client_err:

print("A service client error occurred: " +
format(client_err.response["Error"]["Message"]))

304

Rekognition Custom Labels Guide

except ValueError as value_err:
print("A value error occurred: " + format(value_err))

except FileNotFoundError as file_error:
print("File not found error: " + format(file_error))

except Exception as err:

print("An error occurred: " + format(err))
if _name__ == "__main__":
main()

Java

The following example code displays bounding boxes and image level labels found in an
image.

To analyze a local image, run the program and supply the following command line
arguments:
« The ARN of the model with which you want to analyze the image.

» The name and location of a local image file.

To analyze an image stored in an Amazon S3 bucket, run the program and supply the
following command line arguments:

» The ARN of the model with which you want to analyze the image.

« The name and location of an image within the Amazon S3 bucket that you used in step 4.

« The Amazon S3 bucket that contains the image that you used in step 4.

/-k
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.amazonaws.samples;

import java.awt.*;
import java.awt.image.BufferedImage;

305

Rekognition

Custom Labels Guide

import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import

import
import
import
import
import
import
import
import
import

import
import
import

java.io.IOException;
java.util.List;
javax.imageio.ImagelO;

javax.swing.*;
io.FileNotFoundException;
awt.font.FontRenderContext;
util.logging.Level;
util.logging.Logger;

java.
java.
java.
java.

java.io.File;

java.
java.
java.
java.
java.

com.
com.
com.
com.
com.

com.
com.
com.
com.
com.
com.
com.
com.
com.

com.
com.
com.

amazonaws.
.auth.profile.ProfileCredentialsProvider;
amazonaws.

amazonaws

amazonaws.
amazonaws.

amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.
amazonaws.

amazonaws.
amazonaws.
amazonaws.

io.FileInputStream;
io.InputStream;
nio.ByteBuffer;
io.ByteArrayInputStream;

io.ByteArrayQutputStream;

auth.AwWSCredentialsProvider;

regions.Regions;
rekognition.AmazonRekognition;
AmazonRekognitionClientBuilder;

services.
services.

services.
services
services.
services.
services.
services.
services.
services.
services.

services.

rekognition.

rekognition.

.rekognition.

rekognition.
rekognition.
rekognition.
rekognition.
s3.AmazonS3;

model.
.CustomLabel;
model.
model.
model.
model.

model

BoundingBox;

DetectCustomLabelsRequest;
DetectCustomLabelsResult;
Image;

S30bject;

s3.AmazonS3ClientBuilder;
s3.model.S30bjectInputStream;

rekognition.model.AmazonRekognitionException;
services.s3.model.AmazonS3Exception;
util.IOUtils;

// Calls DetectCustomLabels and displays a bounding box around each detected

image.
public class DetectCustomLabels extends JPanel {

private transient DetectCustomlLabelsResult response;
private transient Dimension dimension;
private transient BufferedImage image;

306

Rekognition Custom Labels Guide

public static final Logger logger =
Logger.getlLogger(DetectCustomLabels.class.getName());

// Finds custom labels in an image stored in an S3 bucket.
public DetectCustomLabels(AmazonRekognition rekClient,

AmazonS3 s3client,

String projectVersionArn,

String bucket,

String key,

Float minConfidence) throws AmazonRekognitionException,

AmazonS3Exception, IOException {

logger.log(Level.INFO, "Processing S3 bucket: {0} image {1}", new
Object[] { bucket, key });

// Get image from S3 bucket and create BufferedImage

com.amazonaws.services.s3.model.S30bject s3object =
s3client.getObject(bucket, key);

S30bjectInputStream inputStream = s3object.getObjectContent();

image = ImagelO.read(inputStream);

// Set image size
setWindowDimensions();

DetectCustomLabelsRequest request = new DetectCustomlLabelsRequest()
.withProjectVersionArn(projectVersionArn)
.withImage(new Image().withS30bject(new
S30bject().withName(key).withBucket(bucket)))
.withMinConfidence(minConfidence);

// Call DetectCustomLabels

response = rekClient.detectCustomLabels(request);
logFoundLabels(response.getCustomLabels());
drawLabels();

// Finds custom label in a local image file.
public DetectCustomLabels(AmazonRekognition rekClient,
String projectVersionArn,
String photo,
Float minConfidence)
throws IOException, AmazonRekognitionException {

307

Rekognition

Custom Labels Guide

logger.log(Level.INFO, "Processing local file: {@}", photo);

// Get image bytes and buffered image

ByteBuffer imageBytes;

try (InputStream inputStream = new FileInputStream(new File(photo))) {
imageBytes = ByteBuffer.wrap(IOUtils.toByteArray(inputStream));

// Get image for display
InputStream imageBytesStream;
imageBytesStream = new ByteArrayInputStream(imageBytes.array());

ByteArrayOutputStream baos = new ByteArrayOutputStream();
image = ImagelO.read(imageBytesStream);
ImageIO.write(image, "jpg", baos);

// Set image size
setWindowDimensions();

// Analyze image
DetectCustomLabelsRequest request = new DetectCustomlLabelsRequest()
.withProjectVersionArn(projectVersionArn)
.withImage(new Image()
.withBytes(imageBytes))
.withMinConfidence(minConfidence);

response = rekClient.detectCustomLabels(request);
logFoundLabels(response.getCustomLabels());

drawlLabels();

// Log the labels found by DetectCustomLabels
private void logFoundLabels(List<CustomLabel> customLabels) {

logger.info("Custom labels found");
if (customLabels.isEmpty()) {
logger.log(Level.INFO, "No Custom Labels found. Consider lowering

min confidence.");

} else {
for (CustomLabel customLabel : customLabels) {
logger.log(Level.INFO, " Label: {@} Confidence: {1}",

308

Rekognition Custom Labels Guide

new Object[] { customLabel.getName(),
customLabel.getConfidence() });

}

// Sets window dimensions to 1/2 screen size, unless image is smaller
public void setWindowDimensions() {
dimension = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

dimension.width = (int) dimension.getWidth() / 2;

if (image.getWidth() < dimension.width) {
dimension.width = image.getWidth();

}

dimension.height = (int) dimension.getHeight() / 2;
if (image.getHeight() < dimension.height) {

dimension.height = image.getHeight();

setPreferredSize(dimension);

// Draws the image containing the bounding boxes and labels.
@Override
public void paintComponent(Graphics g) {

Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g.

// Draw the image.
g2d.drawImage(image, @, @, dimension.width, dimension.height, this);

public void drawlLabels() {
// Draws bounding boxes (if present) and label text.

int boundingBoxBorderWidth = 5;
int imageHeight = image.getHeight(this);
int imageWidth = image.getWidth(this);

// Set up drawing

309

Rekognition Custom Labels Guide

Graphics2D g2d = image.createGraphics();
g2d.setColor(Color.GREEN);

g2d.setFont(new Font("Tahoma", Font.PLAIN, 50));

Font font = g2d.getFont();

FontRenderContext frc = g2d.getFontRenderContext();
g2d.setStroke(new BasicStroke(boundingBoxBorderWidth));

List<CustomlLabel> customLabels = response.getCustomlLabels();

int imagelevellabelHeight = 0;
for (CustomLabel customLabel : customLabels) {

String label = customlLabel.getName();

int textWidth = (int) (font.getStringBounds(label, frc).getWidth());
int textHeight = (int) (font.getStringBounds(label,
frc).getHeight());

// Draw bounding box, if present
if (customLabel.getGeometry() != null) {

BoundingBox box = customLabel.getGeometry().getBoundingBox();
float left = imageWidth * box.getLeft();
float top = imageHeight * box.getTop();

// Draw black rectangle
g2d.setColor(Color.BLACK);
g2d.fillRect(Math.round(left + (boundingBoxBorderWidth)),
Math.round(top + (boundingBoxBorderWidth)),
textWidth + boundingBoxBorderWidth, textHeight +
boundingBoxBorderWidth);

// Write label onto black rectangle

g2d.setColor(Color.GREEN);

g2d.drawString(label, left + boundingBoxBorderWidth, (top +
textHeight));

// Draw bounding box around label location
g2d.drawRect(Math.round(left), Math.round(top),
Math.round((imageWidth * box.getWidth())),
Math.round((imageHeight * box.getHeight())));
}
// Draw image level labels.
else {

310

Rekognition Custom Labels Guide

// Draw black rectangle
g2d.setColor(Color.BLACK);
g2d.fillRect(1@, 10 + imagelLevellabelHeight, textWidth,

textHeight);
g2d.setColor(Color.GREEN);
g2d.drawString(label, 10, textHeight + imagelLevellabelHeight);
imagelLevellabelHeight += textHeight;
}
}

g2d.dispose();

public static void main(String args[]) throws Exception {

String photo = null;

String bucket = null;

String projectVersionArn = null;
float minConfidence = 50;

final String USAGE = "\n" + "Usage: " + "<model_arn> <image> <bucket>\n
\n" + "Where:\n"
+ " model_arn - The ARN of the model that you want to use. \n
\n"
+ " image - The location of the image on your local file
system or within an S3 bucket.\n\n"
+ " bucket - The S3 bucket that contains the image. Don't

specify if image is local.\n\n";

// Collect the arguments. If 3 arguments are present, the image is
assumed to be
// in an S3 bucket.

if (args.length < 2 || args.length > 3) {

System.out.println(USAGE);
System.exit(1l);

projectVersionArn = args[0];
photo = args[1];

if (args.length == 3) {

311

Rekognition Custom Labels Guide

bucket = args[2];

DetectCustomLabels panel = null;

try {

AWSCredentialsProvider provider =new
ProfileCredentialsProvider("custom-labels-access");

AmazonRekognition rekClient =
AmazonRekognitionClientBuilder.standard()
.withCredentials(provider)
.withRegion(Regions.US_WEST_2)
.build();

AmazonS3 s3client = AmazonS3ClientBuilder.standard()
.withCredentials(provider)
.withRegion(Regions.US_WEST_2)

.build();

// Create frame and panel.
JFrame frame = new JFrame("Custom Labels");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

if (args.length == 2) {
// Analyze local image
panel = new DetectCustomLabels(rekClient, projectVersionArn,
photo, minConfidence);
} else {
// Analyze image in S3 bucket
panel = new DetectCustomLabels(rekClient, s3client,
projectVersionArn, bucket, photo, minConfidence);

}

frame.setContentPane(panel);
frame.pack();
frame.setVisible(true);

} catch (AmazonRekognitionException rekError) {
String errorMessage = "Rekognition client error: " +
rekError.getMessage();
logger.log(Level .SEVERE, errorMessage);

312

Rekognition

Custom Labels Guide

System.out.println(errorMessage);
System.exit(1l);

} catch (FileNotFoundException fileError) {
String errorMessage = "File not found: " + photo;
logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1);

} catch (IOException fileError) {
String errorMessage = "Input output exception: " +

fileError.getMessage();

logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1);

} catch (AmazonS3Exception s3Error) {
String errorMessage = "S3 error: " + s3Error.getErrorMessage();
logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1l);

Java V2

The following example code displays bounding boxes and image level labels found in an
image.

To analyze a local image, run the program and supply the following command line

arguments:

« projectVersionArn - The ARN of the model with which you want to analyze the

image.

« photo - the name and location of a local image file.

To analyze an image stored in an S3 bucket, run the program and supply the following
command line arguments:

« The ARN of the model with which you want to analyze the image.

« The name and location of an image within the S3 bucket that you used in step 4.

313

Rekognition

Custom Labels Guide

« The Amazon S3 bucket that contains the image that you used in step 4.

/*

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;
auth.credentials.ProfileCredentialsProvider;
core.ResponseBytes;
core.SdkBytes;

import
import
import
import
import
import
import
import
import

software.amazon.awssdk.services.rekognition.model.

import

software.amazon.awssdk.services.rekognition.model.
software.
software.
software.

import
import
import

import
import
import
import
import

import
import
import
import
import
import
import

import
import
import
import

software.
software.
software.
software.
software.
software.
software.
software.

software.
software.
software.
software.
software.

java.io.
java.io.
java.io.
java.io.
java.io.
java.io.
java.uti

java.awt

amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.
amazon.

amazon.
amazon.
amazon.

amazon.
amazon.
amazon.
amazon.
amazon.

awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.

awssdk.
awssdk.
awssdk.

awssdk.
awssdk.
awssdk.
awssdk.
awssdk.

core.sync.ResponseTransformer;

regions.Region;

services.
services.
services.

services.
services.
services.

services.
services.
services.
services.
services.

ByteArrayInputStream;

File;

FileInputStream;

FileNotFoundException;
IOException;
InputStream;

1.List;

* .
* 4

java.awt.font.FontRenderContext;
java.awt.image.BufferedImage;
javax.imageio.ImagelO;

rekognition.
rekognition.
rekognition.

rekognition.
rekognition.
rekognition.

s3.S3Client;

RekognitionClient;
model.S30bject;
model.Image;

DetectCustomLabelsRequest;

DetectCustomLabelsResponse;
model.CustomlLabel;
model.RekognitionException;
model .BoundingBox;

s3.model.GetObjectRequest;
s3.model.GetObjectResponse;
s3.model.NoSuchBucketException;
s3.model.NoSuchKeyException;

314

Rekognition Custom Labels Guide

import javax.swing.*;

import java.util.logging.Level;
import java.util.logging.Logger;

// Calls DetectCustomLabels on an image. Displays bounding boxes or
// image level labels found in the image.
public class ShowCustomlLabels extends JPanel {

private transient BufferedImage image;

private transient DetectCustomLabelsResponse response;

private transient Dimension dimension;

public static final Logger logger =
Logger.getLogger(ShowCustomLabels.class.getName());

// Finds custom labels in an image stored in an S3 bucket.
public ShowCustomLabels(RekognitionClient rekClient,
S3Client s3client,
String projectVersionArn,
String bucket,
String key,
Float minConfidence) throws RekognitionException,
NoSuchBucketException, NoSuchKeyException, IOException {

logger.log(Level.INFO, "Processing S3 bucket: {0} image {1}", new
Object[] { bucket, key });

// Get image from S3 bucket and create BufferedImage

GetObjectRequest requestObject =
GetObjectRequest.builder().bucket(bucket).key(key).build();

ResponseBytes<GetObjectResponse> result =
s3client.getObject(requestObject, ResponseTransformer.toBytes());

ByteArrayInputStream bis = new
ByteArrayInputStream(result.asByteArray());

image = ImagelO.read(bis);

// Set image size
setWindowDimensions();

// Construct request parameter for DetectCustomLabels
S30bject s30bject = S30bject.builder().bucket(bucket).name(key).build();

Image s3Image = Image.builder().s30bject(s30bject).build();

315

Rekognition Custom Labels Guide

DetectCustomLabelsRequest request =
DetectCustomLabelsRequest.builder().image(s3Image)

.projectVersionArn(projectVersionArn).minConfidence(minConfidence).build();

response = rekClient.detectCustomLabels(request);
logFoundLabels(response.customLabels());
drawlLabels();

// Finds custom label in a local image file.
public ShowCustomLabels(RekognitionClient rekClient,
String projectVersionArn,
String photo,
Float minConfidence)
throws IOException, RekognitionException {

logger.log(Level.INFO, "Processing local file: {0}", photo);

// Get image bytes and buffered image

InputStream sourceStream = new FileInputStream(new File(photo));

SdkBytes imageBytes = SdkBytes.fromInputStream(sourceStream);

ByteArrayInputStream inputStream = new
ByteArrayInputStream(imageBytes.asByteArray());

image = ImagelO.read(inputStream);

setWindowDimensions();

// Construct request parameter for DetectCustomLabels
Image localImageBytes = Image.builder().bytes(imageBytes).build();

DetectCustomLabelsRequest request =
DetectCustomLabelsRequest.builder().image(localImageBytes)

.projectVersionArn(projectVersionArn).minConfidence(minConfidence).build();

response = rekClient.detectCustomLabels(request);

logFoundLabels(response.customLabels());
drawlLabels();

// Sets window dimensions to 1/2 screen size, unless image is smaller

316

Rekognition Custom Labels Guide

public void setWindowDimensions() {
dimension = java.awt.Toolkit.getDefaultToolkit().getScreenSize();

dimension.width = (int) dimension.getWidth() / 2;

if (image.getWidth() < dimension.width) {
dimension.width = image.getWidth();

}

dimension.height = (int) dimension.getHeight() / 2;

if (image.getHeight() < dimension.height) {
dimension.height = image.getHeight();

setPreferredSize(dimension);

// Draws bounding boxes (if present) and label text.
public void drawlLabels() {

int boundingBoxBorderWidth = 5;
int imageHeight = image.getHeight(this);
int imageWidth = image.getWidth(this);

// Set up drawing

Graphics2D g2d = image.createGraphics();
g2d.setColor(Color.GREEN);

g2d.setFont(new Font("Tahoma", Font.PLAIN, 50));

Font font = g2d.getFont();

FontRenderContext frc = g2d.getFontRenderContext();
g2d.setStroke(new BasicStroke(boundingBoxBorderWidth));

List<CustomLabel> customLabels = response.customLabels();

int imagelevellLabelHeight = 0;
for (CustomLabel customLabel : customLabels) {

String label = customlLabel.name();
int textWidth = (int) (font.getStringBounds(label, frc).getWidth());
int textHeight = (int) (font.getStringBounds(label,

frc).getHeight());

// Draw bounding box, if present

317

Rekognition Custom Labels Guide

if (customLabel.geometry() != null) {

BoundingBox box = customLabel.geometry().boundingBox();
float left = imageWidth * box.left();
float top = imageHeight * box.top();

// Draw black rectangle
g2d.setColor(Color.BLACK);
g2d.fillRect(Math.round(left + (boundingBoxBorderWidth)),
Math.round(top + (boundingBoxBordexWidth)),
textWidth + boundingBoxBorderWidth, textHeight +
boundingBoxBordexrWidth);

// Write label onto black rectangle

g2d.setColor(Color.GREEN);

g2d.drawString(label, left + boundingBoxBorderWidth, (top +
textHeight));

// Draw bounding box around label location
g2d.drawRect(Math.round(left), Math.round(top),
Math.round((imageWidth * box.width())),
Math.round((imageHeight * box.height())));

}
// Draw image level labels.
else {
// Draw black rectangle
g2d.setColor(Color.BLACK);
g2d.fillRect (1@, 10 + imagelLevellLabelHeight, textWidth,
textHeight);
g2d.setColor(Color.GREEN);
g2d.drawString(label, 10, textHeight + imagelLevellabelHeight);
imagelLevellabelHeight += textHeight;
}

}
g2d.dispose();

// Log the labels found by DetectCustomLabels

private void logFoundLabels(List<CustomLabel> customLabels) {
logger.info("Custom labels found:");
if (customLabels.isEmpty()) {

318

Rekognition Custom Labels Guide

logger.log(Level.INFO, "No Custom Labels found. Consider lowering
min confidence.");

}
else {
for (CustomLabel customLabel : customLabels) {
logger.log(Level.INFO, " Label: {@} Confidence: {1}",
new Object[] { customLabel.name(),
customLabel.confidence() });

}

// Draws the image containing the bounding boxes and labels.
@Override
public void paintComponent(Graphics g) {

Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g.

// Draw the image.
g2d.drawImage(image, @, @, dimension.width, dimension.height, this);

public static void main(String args[]) throws Exception {

String photo = null;
String bucket = null;
String projectVersionArn = null;

final String USAGE = "\n" + "Usage: " + "<model_arn> <image> <bucket>\n
\n" + "Where:\n"
+ " model_arn - The ARN of the model that you want to use. \n
\n"
+ " image - The location of the image on your local file

system or within an S3 bucket.\n\n"
+ " bucket - The S3 bucket that contains the image. Don't
specify if image is local.\n\n";

// Collect the arguments. If 3 arguments are present, the image is
assumed to be

// in an S3 bucket.

if (args.length < 2 || args.length > 3) {

319

Rekognition Custom Labels Guide

System.out.println(USAGE);
System.exit(1l);

projectVersionArn = args[0];
photo = args[1];

if (args.length == 3) {
bucket = args[2];

float minConfidence = 50;

ShowCustomLabels panel = null;

try {
// Get the Rekognition client

// Get the Rekognition client.

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

S3Client s3Client = S3Client.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Create frame and panel.
JFrame frame = new JFrame("Custom Labels");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

if (args.length == 2) {
// Analyze local image
panel = new ShowCustomLabels(rekClient, projectVersionArn,
photo, minConfidence);
} else {
// Analyze image in S3 bucket

320

Rekognition Custom Labels Guide

panel = new ShowCustomLabels(rekClient, s3Client,
projectVersionArn, bucket, photo, minConfidence);

}

frame.setContentPane(panel);
frame.pack();
frame.setVisible(true);

} catch (RekognitionException rekError) {

String errorMessage = "Rekognition client error: " +
rekError.getMessage();
logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1);
} catch (FileNotFoundException fileError) {
String errorMessage = "File not found: " + photo;
logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1l);
} catch (IOException fileError) {
String errorMessage = "Input output exception: " +
fileError.getMessage();
logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1l);
} catch (NoSuchKeyException bucketError) {
String errorMessage = String.format("Image not found: %s in bucket
%s.", photo, bucket);
logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1l);
} catch (NoSuchBucketException bucketError) {
String errorMessage = "Bucket not found:
logger.log(Level .SEVERE, errorMessage);
System.out.println(errorMessage);
System.exit(1);

' + bucket;

321

Rekognition Custom Labels Guide

DetectCustomLabels operation request

In the DetectCustomlLabels operation, you supply an input image either as a base64-encoded
byte array or as an image stored in an Amazon S3 bucket. The following example JSON request
shows the image loaded from an Amazon S3 bucket.

{
"ProjectVersionArn": "string",
"Image":{

"S30bject":{
"Bucket":"string",
"Name":"string",
"Version":"string"

}
1,
"MinConfidence": 90,
"MaxLabels": 10,
}

DetectCustomLabels operation response

The following JSON response from the DetectCustomLabels operation shows the custom labels
that were detected in the following image.

{
"CustomLabels": [
{
"Name": "MylLogo",
"Confidence": 77.7729721069336,
"Geometry": {
"BoundingBox": {
"Width": ©.198987677693367,
"Height": 0.31296101212501526,
"Left": ©0.07924537360668182,
"Top": 0.4037395715713501
}
}
}
]
}

DetectCustomLabels operation request 322

Rekognition Custom Labels Guide

Managing Amazon Rekognition Custom Labels resources

This section gives you an overview of the Amazon Rekognition Custom Labels resources you use to
train and manage a model. Also included is overview information for using the AWS SDK to train
and use a model.

Amazon Rekognition Custom Labels relies on three different resources to detect your custom
labels: projects, datasets, and models.

» Projects - Used to group other resouces like datasets, model versions, and model evaluations
together.

» Datasets - Defines images and associated metadata for use in training and testing models. You
can create a dataset by using a SageMaker Al format manifest file or by copying an existing
Amazon Rekognition Custom Labels dataset.

» Models - The mathematical model that actually predicts the presence of objects, scenes, and
concepts in images by identifying patterns in images used to train the model.

Topics

« Managing an Amazon Rekognition Custom Labels project

« Managing datasets

« Managing an Amazon Rekognition Custom Labels model

Managing an Amazon Rekognition Custom Labels project

Within Amazon Rekognition Custom Labels, you use a project to manage the models that you
create for a specific use case. A project manages datasets, model training, model versions, model
evaluation, and the running of your project's models.

Topics

« Deleting an Amazon Rekognition Custom Labels project

» Describing a project (SDK)

» Creating a project with AWS CloudFormation

Managing a project 323

Rekognition Custom Labels Guide

Deleting an Amazon Rekognition Custom Labels project

You can delete a project by using the Amazon Rekognition console or by calling the DeleteProject
API. To delete a project, you must first delete each associated model. A deleted project or model
can't be undeleted.

Topics

» Deleting an Amazon Rekognition Custom Labels project (Console)

» Deleting an Amazon Rekognition Custom Labels project (SDK)

Deleting an Amazon Rekognition Custom Labels project (Console)

You can delete a project from the projects page, or you can delete a project from a project's detail
page. The following procedure shows you how to delete a project using the projects page.

The Amazon Rekognition Custom Labels console deletes associated models and datasets for you
during project deletion. You can't delete a project if any of its models are running or training.

To stop a running model, see Stopping an Amazon Rekognition Custom Labels model (SDK). If a
model is training, wait until it finishes before you delete the project.

To delete a project (console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.

In the left navigation pane, choose Projects.

i A W

On the Projects page, select the radio button for the project that you want to delete. The
project list showing echo-devices-project, with 1 version created on 2020-03-25, and options
to Delete, Train new model, or Create project.

Deleting a project 324

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProject
https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

Projects (669) info l Delete || Train new model |

Q 1 2 3 4 5 6 7 . 90 >
Name Versions Date created F1 score Status
o © echo-devices-project 1 2020-03-25
2020-03-25

6. Choose Delete at the top of the page. The Delete project dialog box is shown.

7. If the project has no associated models:

a. Enter delete to delete the project.
b. Choose Delete to delete the project.

8. If the project has associated models or datasets:

a. Enter delete to confirm that you want to delete the model(s) and datasets.

b. Choose either Delete associated models or Delete associated datasets or Delete
associated datasets and models, depending on whether the model has datasets, models,
or both. Model deletion might take a while to complete.

(@ Note

The console can't delete models that are in-training or running. Try again after
stopping any running models that are listed, and wait until models listed as
training finish.

If you Close the dialog box during model deletion, the models are still deleted.
Later, you can delete the project by repeating this procedure.

The panel for deleting a model gives you explicit instructions to delete associated models.

Deleting a project 325

Rekognition Custom Labels Guide

Delete project X

Are you sure you want to delete:
echo-devices-project ?

All models in the project must be deleted before the project can be deleted. You cannot
delete models which are running or being trained. Learn more

Q Delete models
To delete this project, all of its models must be deleted. Model deletion
can take up to 5 minutes.

echo-devices-project.2020-03-30T09.28.17 TRAINING_COMPLETED

To confirm deletion, enter delete below.

delete|

Close Delete associated models

c. Enter delete to confirm that you want to delete the project.

d. Choose Delete to delete the project.

Deleting a project 326

Rekognition Custom Labels Guide

Delete project X

Are you sure you want to delete:
echo-devices-project ?

All models in the project must be deleted before the project can be deleted. You cannot
delete models which are running or being trained. Learn more

@ This project can be deleted
This project has no models and can be deleted.

To confirm deletion, enter delete below.

delete

Deleting an Amazon Rekognition Custom Labels project (SDK)

You delete an Amazon Rekognition Custom Labels project by calling DeleteProject and supplying
the Amazon Resource Name (ARN) of the project that you want to delete. To get the ARNs

of the projects in your AWS account, call DescribeProjects. The response includes an array

of ProjectDescription objects. The project ARN is the ProjectAzrn field. You can use the

project name to identify the ARN of the project. For example, arn:aws:rekognition:us-
east-1:123456789010:project/project name/1234567890123.

Before you can delete a project, you must first delete all models and datasets in the project. For
more information, see Deleting an Amazon Rekognition Custom Labels model (SDK) and Deleting a
dataset.

The project might take a few moments to delete. During that time, the status of the project is
DELETING. The project is deleted if a subsequent call to DescribeProjects doesn't include the
project that you deleted.

Deleting a project 327

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProject
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjects
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ProjectDescription
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjects

Rekognition Custom Labels Guide

To delete a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following code to delete a project.

AWS CLI

Change the value of project-arn to the name of the project that you want to delete.

aws rekognition delete-project --project-arn project_arn \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

« project_arn— the ARN of the project that you want to delete.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Amazon Rekognition Custom Labels project example used in the service
documentation:
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/mp-delete-
project.html

Shows how to delete an existing Amazon Rekognition Custom Labels project.

You must first delete any models and datasets that belong to the project.

import argparse
import logging
import time
import boto3

from botocore.exceptions import ClientError

Deleting a project 328

Rekognition

Custom Labels Guide

logger = logging.getlLogger(__name__)

def find_forward_slash(input_string, n):

def

Returns the location of '/' after n number of occurences.
:param input_string: The string you want to search
n: the occurence that you want to find.

position = input_string.find('/"')
while position >= @ and n > 1:

position = input_string.find('/', position + 1)

n -=1
return position

delete_project(rek_client, project_arn):

Deletes an Amazon Rekognition Custom Labels project.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_arn: The ARN of the project that you want to delete.

try:
Delete the project
logger.info("Deleting project: %s'", project_arn)
response = rek_client.delete_project(ProjectArn=project_azrn)
logger.info("project status: %s",response['Status'])
deleted = False
logger.info("waiting for project deletion: %s'", project_arn)
Get the project name
start = find_forward_slash(project_arn, 1) + 1
end = find_forward_slash(project_arn, 2)
project_name = project_arn[start:end]

project_names = [project_name]

while deleted is False:

Deleting a project

329

Rekognition Custom Labels Guide

project_descriptions = rek_client.describe_projects(
ProjectNames=project_names)['ProjectDescriptions']

if len(project_descriptions) ==
deleted = True

else:
time.sleep(5)

logger.info("project deleted: %s",project_azrn)
return True

except ClientError as err:
logger.exception(
"Couldn't delete project - %s: %s",
project_arn, err.response['Error']['Message'])
raise

def add_arguments(parser):

Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The ARN of the project that you want to delete."

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:
get command line arguments
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Deleting project: {args.project_arn}")

Deleting a project 330

Rekognition

Custom Labels Guide

except ClientError as err:

if __name__ == "__main__":

Delete the project.
= boto3.Session(profile_name="'custom-labels-access')
rekognition_client = session.client("rekognition")

session

delete_project(rekognition_client,
args.project_arn)

print(f"Finished deleting project: {args.project_arn}")

error_message = f"Problem deleting project: {err}"
logger.exception(error_message)
print(error_message)

main()

Java V2

Use the following code. Supply the following command line parameters:

« project_arn— the ARN of the project that you want to delete.

/*

Copyright Amazon.com, Inc. or
SPDX-License-Identifier: Apache-2.0

*/

package com.

import
import
import
import

import
import
import
import
import

java.util.List;
java.util.Objects;
java.util.logging.Level;

software.
software.
software.

software

software.

amazon.
amazon.
amazon.
.amazon.
amazon.

awssdk.
awssdk.
awssdk.
awssdk.
awssdk.

its affiliates. All Rights Reserved.

example.rekognition;

java.util.logging.Logger;

auth.credentials.ProfileCredentialsProvider;
regions.Region;
services.rekognition.RekognitionClient;
services.rekognition.model.DeleteProjectRequest;
services.rekognition.model.DeleteProjectResponse;

Deleting a project

331

Rekognition Custom Labels Guide

import
software.amazon.awssdk.services.rekognition.model.DescribeProjectsRequest;
import
software.amazon.awssdk.services.rekognition.model.DescribeProjectsResponse;
import software.amazon.awssdk.services.rekognition.model.ProjectDescription;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;

public class DeleteProject {

public static final Logger logger =
Logger.getlLogger(DeleteProject.class.getName());

public static void deleteMyProject(RekognitionClient rekClient, String
projectArn) throws InterruptedException {

try {
logger.log(Level.INFO, "Deleting project: {@}", projectArn);
// Delete the project
DeleteProjectRequest deleteProjectRequest =
DeleteProjectRequest.builder().projectArn(projectArn).build();
DeleteProjectResponse response =
rekClient.deleteProject(deleteProjectRequest);
logger.log(Level.INFO, "Status: {@}", response.status());
// Wait until deletion finishes
Boolean deleted = false;
do {
DescribeProjectsRequest describeProjectsRequest =
DescribeProjectsRequest.builder().build();
DescribeProjectsResponse describeResponse =
rekClient.describeProjects(describeProjectsRequest);
List<ProjectDescription> projectDescriptions =

describeResponse.projectDescriptions();

deleted = true;

Deleting a project 332

Rekognition Custom Labels Guide

for (ProjectDescription projectDescription :
projectDescriptions) {

if (Objects.equals(projectDescription.projectArn(),
projectArn)) {
deleted = false;
logger.log(Level.INFO, "Not deleted: {0}",
projectDescription.projectArn());
Thread.sleep(5000);
break;

} while (Boolean.FALSE.equals(deleted));
logger.log(Level.INFO, "Project deleted: {@} ", projectArn);
} catch (
RekognitionException e) {
logger.log(Level .SEVERE, "Client error occurred: {0}",

e.getMessage());
throw e;

public static void main(String[] args) {

final String USAGE = "\n" + "Usage: " + "<project_arn>\n\n" + "Where:\n"
+ " project_arn - The ARN of the project that you want to delete.
\n\n";

if (args.length != 1) {
System.out.println(USAGE);

System.exit(1l);
}

String projectArn = args[Q];
try {

RekognitionClient rekClient = RekognitionClient.builder()
.region(Region.US_WEST_2)

Deleting a project 333

Rekognition Custom Labels Guide

.credentialsProvider(ProfileCredentialsProvider.create("custom-

labels-access"))
.build();

// Delete the project.
deleteMyProject(rekClient, projectArn);

System.out.println(String.format("Project deleted: %s",
projectArn));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",

rekError.getMessage());
System.exit(1);

catch (InterruptedException intError) {
logger.log(Level .SEVERE, "Exception while sleeping: {0}",

intError.getMessage());
System.exit(1);

Describing a project (SDK)
You can use the DescribeProjects API to get information about your projects.

To describe a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to describe a project. Replace project_name with the name
of the project that you want to describe. If you don't specify --project-names, desriptions
for all projects are returned.

Describing a project (SDK) 334

Rekognition Custom Labels Guide

AWS CLI

aws rekognition describe-projects --project-names project_name \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

» project_name— the name of the project that you want to describe. If you don't specify a
name, descriptions for all projects are returned.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Shows how to describe an Amazon Rekognition Custom Labels project.
import argparse

import logging

import json

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name_)

def display_project_info(project):
Displays information about a Custom Labels project.
:param project: The project that you want to display information about.
print(f"Arn: {project['ProjectArn']}")
print(f"Status: {project['Status']}")

if len(project['Datasets']) == 0:
print("Datasets: None")

else:
print("Datasets:")

Describing a project (SDK) 335

Rekognition Custom Labels Guide

for dataset in project['Datasets']:
print(f"\tCreated: {str(dataset['CreationTimestamp'])}")
print(f"\tType: {dataset['DatasetType']}")
print(f"\tARN: {dataset['DatasetArn']}")
print(f"\tStatus: {dataset['Status']}")
print(f"\tStatus message: {dataset['StatusMessage']}")
print(f"\tStatus code: {dataset['StatusMessageCode']}")
print()

print()

def describe_projects(rek_client, project_name):
Describes an Amazon Rekognition Custom Labels project, or all projects.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_name: The project you want to describe. Pass None to describe
all projects.

try:
Describe the project
if project_name is None:
logger.info("Describing all projects.")
else:
logger.info("Describing project: %s.",project_name)

if project_name is None:
response = rek_client.describe_projects()
else:
project_names = json.loads('["' + project_name + '"]")
response = rek_client.describe_projects(ProjectNames=project_names)

print('Projects\n-------- ")

if len(response['ProjectDescriptions']) == 0:
print("Project(s) not found.")

else:

for project in response['ProjectDescriptions']:
display_project_info(project)

logger.info("Finished project description.")
except ClientError as err:

logger.exception(
"Couldn't describe project - %s: %s",

Describing a project (SDK) 336

Rekognition Custom Labels Guide

project_name,err.response['Error']['Message'])
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"--project_name", help="The name of the project that you want to
describe.", required=False

)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:
Get command line arguments.
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)
args = parser.parse_args()
print(f"Describing projects: {args.project_namel}")
Describe the project.
session = boto3.Session(profile_name='custom-labels-access')

rekognition_client = session.client("rekognition")

describe_projects(rekognition_client,
args.project_name)

if args.project_name is None:
print("Finished describing all projects.")
else:
print("Finished describing project %s.", args.project_name)

except ClientError as err:

Describing a project (SDK) 337

Rekognition Custom Labels Guide

error_message = f"Problem describing project: {err}"
logger.exception(error_message)
print(error_message)

if __name__ == "__main__":
main()

Java V2

Use the following code. Supply the following command line parameters:

« project_name — the ARN of the project that you want to describe. If you don't specify
a name, descriptions for all projects are returned.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import java.util.Arraylist;
import java.util.List;

import java.util.logging.Llevel;
import java.util.logging.Logger;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.services.rekognition.RekognitionClient;
import software.amazon.awssdk.services.rekognition.model.DatasetMetadata;
import
software.amazon.awssdk.services.rekognition.model.DescribeProjectsRequest;
import
software.amazon.awssdk.services.rekognition.model.DescribeProjectsResponse;
import software.amazon.awssdk.services.rekognition.model.ProjectDescription;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;

public class DescribeProjects {

public static final Logger logger =
Logger.getLogger(DescribeProjects.class.getName());

Describing a project (SDK) 338

Rekognition Custom Labels Guide

public static void describeMyProjects(RekognitionClient rekClient, String
projectName) {

DescribeProjectsRequest descProjects = null;
// If a single project name is supplied, build projectNames argument
List<String> projectNames = new ArraylList<String>();

if (projectName == null) {
descProjects = DescribeProjectsRequest.builder().build();
} else {
projectNames.add(projectName);
descProjects
DescribeProjectsRequest.builder().projectNames(projectNames).build();

}

// Display useful information for each project.

DescribeProjectsResponse resp =
rekClient.describeProjects(descProjects);

for (ProjectDescription projectDescription : resp.projectDescriptions())

System.out.println("ARN: " + projectDescription.projectArn());
System.out.println("Status: " +
projectDescription.statusAsString());
if (projectDescription.hasDatasets()) {
for (DatasetMetadata datasetDescription :
projectDescription.datasets()) {
System.out.println("\tdataset Type: " +
datasetDescription.datasetTypeAsString());
System.out.println("\tdataset ARN: " +
datasetDescription.datasetArn());
System.out.println("\tdataset Status: " +
datasetDescription.statusAsString());
}

}
System.out.println();

Describing a project (SDK) 339

Rekognition Custom Labels Guide

public static void main(String[] args) {
String projectArn = null;
// Get command line arguments

final String USAGE = "\n" + "Usage: " + "<project_name>\n\n" + "Where:
\n"
+ " project_name - (Optional) The name of the project that you
want to describe. If not specified, all projects "
+ "are described.\n\n";

if (args.length > 1) {
System.out.println(USAGE);
System.exit(1l);

if (args.length == 1) {
projectArn = args[0];

try {

// Get the Rekognition client
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))
.region(Region.US_WEST_2)
.build();

// Describe projects
describeMyProjects(rekClient, projectArn);
rekClient.close();
} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",

rekError.getMessage());
System.exit(1);

Describing a project (SDK) 340

Rekognition Custom Labels Guide

Creating a project with AWS CloudFormation

Amazon Rekognition Custom Labels is integrated with AWS CloudFormation, a service that helps
you model and set up your AWS resources so that you can spend less time creating and managing
your resources and infrastructure. You create a template that describes all the AWS resources that
you want, and AWS CloudFormation takes care of provisioning and configuring those resources for
you.

You can use AWS CloudFormation to provision and configure Amazon Rekognition Custom Labels
projects.

When you use AWS CloudFormation, you can reuse your template to set up your Amazon
Rekognition Custom Labels projects consistently and repeatedly. Just describe your projects once,
and then provision the same projects over and over in multiple AWS accounts and Regions.

Amazon Rekognition Custom Labels and AWS CloudFormation templates

To provision and configure projects for Amazon Rekognition Custom Labels and related services,
you must understand AWS CloudFormation templates. Templates are formatted text files in
JSON or YAML. These templates describe the resources that you want to provision in your AWS
CloudFormation stacks. If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation
Designer to help you get started with AWS CloudFormation templates. For more information, see
What is AWS CloudFormation Designer? in the AWS CloudFormation User Guide.

For reference information about Amazon Rekognition Custom Labels projects, including examples
of JSON and YAML templates, see Rekognition resource type reference.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

AWS CloudFormation

AWS CloudFormation User Guide

AWS CloudFormation API Reference

AWS CloudFormation Command Line Interface User Guide

Creating a project with AWS CloudFormation 341

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_Rekognition.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Rekognition Custom Labels Guide

Managing datasets

A dataset contains the images and assigned labels that you use to train or test a model. The topics
in this section show you how to manage a dataset with the Amazon Rekognition Custom Labels
console and the AWS SDK.

Topics

» Adding a dataset to a project

« Adding more images to a dataset

» Creating a dataset using an existing dataset (SDK)

» Describing a dataset (SDK)

o Listing dataset entries (SDK)

 Distributing a training dataset (SDK)

» Deleting a dataset

Adding a dataset to a project

You can add a training dataset or a test dataset to an existing project. If you want to replace an
existing dataset, first delete the existing dataset. For more information, see Deleting a dataset.
Then, add the new dataset.

Topics

» Adding a dataset to a project (Console)

« Adding a dataset to a project (SDK)

Adding a dataset to a project (Console)

You can add a training or test dataset to a project by using the Amazon Rekognition Custom Labels
console.

To add a dataset to a project

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Inthe left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown.

Managing datasets 342

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

3. In the left navigation pane, choose Projects. The Projects view is shown.

4. Choose the project to which you want to add a dataset.

5. In the left navigation pane, under the project name, choose Datasets.

6. If the project doesn't have an existing dataset, the Create dataset page is shown. Do the

following:

a. Onthe Create dataset page, enter the image source information. For more information,
see the section called “Creating datasets with images”.

b. Choose Create dataset to create the dataset.
7. If the project has an existing dataset (training or test), the project details page is shown. Do the
following:
a. On the project details page, choose Actions.
b. If you want to add a training dataset, choose Create training dataset.
c. If you want to add a test dataset, choose Create test dataset.

d. On the Create dataset page, enter the image source information. For more information,
see the section called “Creating datasets with images”.

e. Choose Create dataset to create the dataset.

8. Add images to your dataset. For more information, see Adding more images (console).

9. Add labels to your dataset. For more information, see Add new labels (Console).

10. Add labels to your images. If you're adding image-level labels, see the section called “Assigning
image-level labels to an image”. If you're adding bounding boxes, see Labeling objects with

bounding boxes. For more information, see Purposing datasets.

Adding a dataset to a project (SDK)

You can add a train or test dataset to an existing project in the following ways:

» Create a dataset using a manifest file. For more information, see Creating a dataset with a
SageMaker Al Ground Truth manifest file (SDK).

» Create an empty dataset and populate the dataset afterwards. The following example shows
how to create an empty dataset. To add entries after you create an empty dataset, see Adding
more images to a dataset.

Adding a dataset 343

Rekognition Custom Labels Guide

To add a dataset to a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following examples to add JSON lines to a dataset.

CLI

Replace project_arn with the project that you want to add the dataset set to. Replace
dataset_type with TRAIN to create a training dataset, or TEST to create a test dataset.

aws rekognition create-dataset --project-arn project_arn \
--dataset-type dataset_type \
--profile custom-labels-access

Python

Use the following code to create a dataset. Supply the following command line options:

« project_arn— the ARN of the project that you want to add the test dataset to.

» type — the type of dataset that you want to create (train or test)

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

import argparse
import logging
import time
import boto3

from botocore.exceptions import ClientError
logger = logging.getlLogger(__name__)

def create_empty_dataset(rek_client, project_arn, dataset_type):
Creates an empty Amazon Rekognition Custom Labels dataset.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_arn: The ARN of the project in which you want to create a
dataset.

Adding a dataset 344

Rekognition Custom Labels Guide

:param dataset_type: The type of the dataset that you want to create (train
or test).

try:
#Create the dataset.
logger.info("Creating empty %s dataset for project %s",
dataset_type, project_azrn)

dataset_type=dataset_type.upper()

response = rek_client.create_dataset(
ProjectArn=project_arn, DatasetType=dataset_type

dataset_arn=response['DatasetArn']
logger.info("dataset ARN: %s", dataset_arn)

finished=False
while finished is False:

dataset=rek_client.describe_dataset(DatasetArn=dataset_arn)
status=dataset['DatasetDescription']['Status"']

if status == "CREATE_IN_PROGRESS":

logger.info(("Creating dataset: %s ", dataset_arn))
time.sleep(5)

continue

if status == "CREATE_COMPLETE":
logger.info("Dataset created: %s", dataset_azrn)
finished=True
continue

if status == "CREATE_FAILED":
error_message = f'"Dataset creation failed: {status} :
{dataset_arn}"
logger.exception(error_message)
raise Exception(error_message)

Adding a dataset 345

Rekognition Custom Labels Guide

error_message = f"Failed. Unexpected state for dataset creation:
{status} : {dataset_arn}"

logger.exception(error_message)
raise Exception(error_message)

return dataset_arn

except ClientError as err:

logger.exception("Couldn't create dataset: %s", err.response['Error']
['Message'])
raise

def add_arguments(parser):

Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(

"project_arn", help="The ARN of the project in which you want to create
the empty dataset."

)

parser.add_argument(

"dataset_type", help="The type of the empty dataset that you want to
create (train or test)."

)
def main():
logging.basicConfig(level=1logging.INFO, format="%(levelname)s: %(message)s")
try:
Get command line arguments.
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Creating empty {args.dataset_type} dataset for project
{args.project_arn}")

Create the empty dataset.

Adding a dataset 346

Rekognition Custom Labels Guide

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

dataset_arn=create_empty_dataset(rekognition_client,
args.project_arn,
args.dataset_type.lower())

print(f"Finished creating empty dataset: {dataset_arn}")

except ClientError as err:
logger.exception("Problem creating empty dataset: %s", err)
print(f"Problem creating empty dataset: {err}")
except Exception as err:
logger.exception("Problem creating empty dataset: %s
print(f"Problem creating empty dataset: {err}")

, err)

if __name__ == "__main__":
main()

Java V2

Use the following code to create a dataset. Supply the following command line options:

« project_arn— the ARN of the project that you want to add the test dataset to.

« type — the type of dataset that you want to create (train or test)

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.CreateDatasetRequest;
import software.amazon.awssdk.services.rekognition.model.CreateDatasetResponse;
import software.amazon.awssdk.services.rekognition.model.DatasetDescription;
import software.amazon.awssdk.services.rekognition.model.DatasetStatus;

Adding a dataset 347

Rekognition Custom Labels Guide

import software.amazon.awssdk.services.rekognition.model.DatasetType;

import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import java.net.URI;

import java.util.logging.Llevel;
import java.util.logging.Logger;
public class CreateEmptyDataset {

public static final Logger logger =
Logger.getLogger(CreateEmptyDataset.class.getName());

public static String createMyEmptyDataset(RekognitionClient rekClient,

String projectArn, String datasetType)
throws Exception, RekognitionException {

try {

logger.log(Level.INFO, "Creating empty {0} dataset for project

{1}",
new Object[] { datasetType.toString(), projectArn });
DatasetType requestDatasetType = null;
switch (datasetType) {
case "train":
requestDatasetType = DatasetType.TRAIN;
break;
case '"test":
requestDatasetType = DatasetType.TEST;
break;
default:
logger.log(Level.SEVERE, "Unrecognized dataset type: {0}",
datasetType);
throw new Exception("Unrecognized dataset type: " +
datasetType);

CreateDatasetRequest createDatasetRequest =
CreateDatasetRequest.builder().projectArn(projectArn)

Adding a dataset

348

Rekognition Custom Labels Guide

.datasetType(requestDatasetType).build();

CreateDatasetResponse response =
rekClient.createDataset(createDatasetRequest);

boolean created = false;

//Wait until updates finishes

do {

DescribeDatasetRequest describeDatasetRequest =
DescribeDatasetRequest.builder()
.datasetArn(response.datasetArn()).build();
DescribeDatasetResponse describeDatasetResponse =
rekClient.describeDataset(describeDatasetRequest);

DatasetDescription datasetDescription =
describeDatasetResponse.datasetDescription();

DatasetStatus status = datasetDescription.status();

logger.log(Level.INFO, "Creating dataset ARN: {0} ",
response.datasetArn());

switch (status) {

case CREATE_COMPLETE:
logger.log(Level.INFO, "Dataset created");
created = true;
break;

case CREATE_IN_PROGRESS:
Thread.sleep(5000);
break;

case CREATE_FAILED:

String error = "Dataset creation failed: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " +

response.datasetArn();
logger.log(Level .SEVERE, error);
throw new Exception(error);

Adding a dataset 349

Rekognition Custom Labels Guide

default:
String unexpectedError = "Unexpected creation state: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " +
response.datasetArn();
logger.log(Level .SEVERE, unexpectedError);
throw new Exception(unexpectedError);

} while (created == false);
return response.datasetArn();
} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not create dataset: {0}",

e.getMessage());
throw e;

public static void main(String args[]) {

String datasetType = null;
String datasetArn = null;
String projectArn = null;

final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_type>\n
\n" + "Where:\n"

+ " project_arn - the ARN of the project that you want to add
copy the datast to.\n\n"
+ " dataset_type - the type of the empty dataset that you want

to create (train or test).\n\n";

if (args.length != 2) {
System.out.println(USAGE);
System.exit(1l);

projectArn = args[0];
datasetType = args[1];

Adding a dataset 350

Rekognition Custom Labels Guide

try {

// Get the Rekognition client
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))
.region(Region.US_WEST_2)
.build();

// Create the dataset
datasetArn = createMyEmptyDataset(rekClient, projectArn,
datasetType);

System.out.println(String.format("Created dataset: %s",
datasetArn));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);
} catch (Exception rekError) {
logger.log(Level .SEVERE, "Error: {0}", rekError.getMessage());
System.exit(1l);

}

3. Addimages to the dataset. For more information, see Adding more images (SDK).

Adding more images to a dataset

You can add more images to your datasets by using the Amazon Rekognition Custom Labels
console or by the calling the UpdateDatasetEntries API.

Topics

» Adding more images (console)

« Adding more images (SDK)

Adding more images 351

Rekognition Custom Labels Guide

Adding more images (console)

When you use the Amazon Rekognition Custom Labels console, you upload images from your local

computer. The images are added to the Amazon S3 bucket location (console or external) where the

images used to create the dataset are stored.

To add more images to your dataset (console)

1.

N o u & W

8.
9.

Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

In the left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown.

In the left navigation pane, choose Projects. The Projects view is shown.
Choose the project that you want to use.

In the left navigation pane, under the project name, choose Dataset.
Choose Actions and select the dataset that you want to add images to.

Choose the images you want to upload to the dataset. You can drag the images or choose the
images that you want to upload from your local computer. You can upload up to 30 images at
a time.

Choose Upload images.

Choose Save changes.

10. Label the images. For more information, see Labeling images.

Adding more images (SDK)

U

pdateDatasetEntries updates or adds JSON lines to a manifest file. You pass the JSON lines

as a byte64 encoded data object in the GroundTruthfield. If you are using an AWS SDK to call

U

pdateDatasetEntries, the SDK encodes the data for you. Each JSON line contains information

for a single image, such as assigned labels or bounding box information. For example:

{"source-ref":"s3://bucket/image", "BB" : {"annotations":

[{"left":1849,"top":1039, "width":422,"height":283,"class_id":0},
{"left":1849,"top":1340,"width" :443,"height":415, "class_id":1},
{"left":2637,"top":1380,"width":676, "height":338,"class_id":2},
{"left":2634,"top":1051, "width":673,"height":338,"class_id":3}],"image_size":
[{"width":4000, "height":2667,"depth":3}]}, "BB-metadata":{"job-name":"labeling-job/
BB","class-map":

Adding more images 352

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

{"@":"comparator","1":"pot_resistor","2":"ir_phototransistor","3":"ir_led"}, "human-
annotated":"yes","objects":[{"confidence":1}, {"confidence":1}, {"confidence":1},
{"confidence":1}], "creation-date":"2021-06-22T10:11:18.006Z", "type":"groundtruth/
object-detection"}}

For more information, see Creating a manifest file.

Use source-ref field as a key to identify images that you want to update. If the dataset doesn't
contain a matching source-ref field value, the JSON line is added as a new image.

To add more images to a dataset (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following examples to add JSON lines to a dataset.
CLI

Replace the value of GroundTruth with the JSON Lines that you want to use. You need to
escape any special characters within the JSON Line.

aws rekognition update-dataset-entries\

--dataset-arn dataset_arn \

--changes '{"GroundTruth" : "{\'"source-ref\":\"s3://your_bucket/your_image
\",\"BB\":{\"annotations\":[{\"left\":1776,\"top\":1017,\"width\":458,\"height
\":317,\"class_id\":0}, {\"left\":1797,\"top\":1334, \"width\":418, \ "height
\":415,\"class_id\":1},{\"left\":2597,\"top\":1361,\"width\":655,\"height
\":329,\"class_id\":2},{\"left\":2581,\"top\":1020,\"width\":689, \"height
\":338,\"class_id\":3}],\"image_size\":[{\"width\":4000,\"height\":2667,
\"depth\":3}]},\"BB-metadata\":{\"job-name\":\"labeling-job/BB\",\"class-map
\":{\"O\":\"comparator\",\"1\":\"pot_resistor\",\"2\":\"ir_phototransistor\"”,
\"3\":\"ir_led\ "}, \"human-annotated\":\"yes\",\"objects\":[{\"confidence\":1},
{\"confidence\":1}, {\"confidence\":1}, {\"confidence\":1}],\"creation-date\":
\"2021-06-22T10:10:48.492Z\",\"type\":\"groundtruth/object-detection\"}}" }' \

--cli-binary-format raw-in-base64-out \

--profile custom-labels-access

Python
Use the following code. Supply the following command line parameters:

» dataset_arn— the ARN of the dataset that you want to update.

Adding more images 353

Rekognition Custom Labels Guide

» updates_file— the file that contains the JSON Line updates.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose
Shows how to add entries to an Amazon Rekognition Custom Labels dataset.

import argparse
import logging
import time
import json
import boto3

from botocore.exceptions import ClientError
logger = logging.getlLogger(__name__)

def update_dataset_entries(rek_client, dataset_arn, updates_file):
Adds dataset entries to an Amazon Rekognition Custom Labels dataset.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param dataset_arn: The ARN of the dataset that yuo want to update.
:param updates_file: The manifest file of JSON Lines that contains the
updates.

try:
status=""
status_message=""

Update dataset entries.
logger.info("Updating dataset %s", dataset_arn)

with open(updates_file) as f:
manifest_file = f.read()

changes=json.loads('{ "GroundTruth" : ' +

Adding more images 354

Rekognition Custom Labels Guide

json.dumps(manifest_file) +

1Y)

rek_client.update_dataset_entries(
Changes=changes, DatasetArn=dataset_arn

finished=False
while finished is False:

dataset=rek_client.describe_dataset(DatasetArn=dataset_arn)

status=dataset['DatasetDescription']['Status"']
status_message=dataset['DatasetDescription']['StatusMessage']

if status == "UPDATE_IN_PROGRESS":

logger.info("Updating dataset: %s ", dataset_arn)
time.sleep(5)
continue

if status == "UPDATE_COMPLETE":
logger.info("Dataset updated:
status, status_message, dataset_arn)
finished=True

[J n

[[
%S : %S : %s",

continue

if status == "UPDATE_FAILED":
error_message = f"Dataset update failed: {status} :
{status_message} : {dataset_arn}"
logger.exception(error_message)
raise Exception (error_message)

error_message = f'"Failed. Unexpected state for dataset update:
{status} : {status_message} : {dataset_arn}"

logger.exception(error_message)

raise Exception(error_message)

logger.info("Added entries to dataset")

return status, status_message

except ClientError as err:

Adding more images 355

Rekognition Custom Labels Guide

logger.exception("Couldn't update dataset: %s", err.response['Error']
['Message'])
raise

def add_arguments(parser):

Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"dataset_arn", help="The ARN of the dataset that you want to update."

parser.add_argument(

"updates_file", help="The manifest file of JSON Lines that contains the
updates."

)

def main():

logging.basicConfig(level=1logging.INFO, format="%(levelname)s: %(message)s")
try:

#get command line arguments

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Updating dataset {args.dataset_arn} with entries from
{args.updates_file}.")

Update the dataset.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

status, status_message=update_dataset_entries(rekognition_client,
args.dataset_arn,

args.updates_file)

print(f"Finished updates dataset: {status} : {status_messagel}")

Adding more images 356

Rekognition Custom Labels Guide

except ClientError as err:
logger.exception("Problem updating dataset: %s'", err)
print(f"Problem updating dataset: {err}")

except Exception as err:
logger.exception("Problem updating dataset: %s'", err)
print(f"Problem updating dataset: {err}")

if __name__ == "__main__":
main()

Java V2

 dataset_arn— the ARN of the dataset that you want to update.
» update_file— the file that contains the JSON Line updates.

/-k
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.core.SdkBytes;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.DatasetChanges;

import software.amazon.awssdk.services.rekognition.model.DatasetDescription;

import software.amazon.awssdk.services.rekognition.model.DatasetStatus;

import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import
software.amazon.awssdk.services.rekognition.model.UpdateDatasetEntriesRequest;

import
software.amazon.awssdk.services.rekognition.model.UpdateDatasetEntriesResponse;

import java.io.FileInputStream;
import java.io.InputStream;

Adding more images 357

Rekognition Custom Labels Guide

import java.util.logging.Level;
import java.util.logging.Logger;

public class UpdateDatasetEntries {

public static final Logger logger =
Logger.getlLogger(UpdateDatasetEntries.class.getName());

public static String updateMyDataset(RekognitionClient rekClient, String

datasetArn,
String updateFile
) throws Exception, RekognitionException {

try {

logger.log(Level.INFO, "Updating dataset {@}",
new Object[] { datasetArn});

InputStream sourceStream = new FileInputStream(updateFile);
SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream);

DatasetChanges datasetChanges = DatasetChanges.builder()
.groundTruth(sourceBytes).build();

UpdateDatasetEntriesRequest updateDatasetEntriesRequest =
UpdateDatasetEntriesRequest.builder()
.changes(datasetChanges)
.datasetArn(datasetArn)
.build();

UpdateDatasetEntriesResponse response =
rekClient.updateDatasetEntries(updateDatasetEntriesRequest);

boolean updated = false;
//Wait until update completes
do {
DescribeDatasetRequest describeDatasetRequest =

DescribeDatasetRequest.builder()
.datasetArn(datasetArn).build();

Adding more images

358

Rekognition Custom Labels Guide

DescribeDatasetResponse describeDatasetResponse =
rekClient.describeDataset(describeDatasetRequest);

DatasetDescription datasetDescription =
describeDatasetResponse.datasetDescription();

DatasetStatus status = datasetDescription.status();
logger.log(Level.INFO, " dataset ARN: {0} ", datasetArn);
switch (status) {
case UPDATE_COMPLETE:

logger.log(Level.INFO, "Dataset updated");

updated = true;

break;
case UPDATE_IN_PROGRESS:

Thread.sleep(5000);

break;

case UPDATE_FAILED:

String error = "Dataset update failed: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " +
datasetArn;
logger.log(Level .SEVERE, error);
throw new Exception(error);
default:
String unexpectedError = "Unexpected update state: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " +
datasetArn;

logger.log(Level .SEVERE, unexpectedError);
throw new Exception(unexpectedError);

} while (updated == false);

return datasetArn;

} catch (RekognitionException e) {

Adding more images 359

Rekognition Custom Labels Guide

logger.log(Level .SEVERE, "Could not update dataset: {0}",
e.getMessage());
throw e;

public static void main(String args[]) {

String updatesFile = null;
String datasetArn = null;

final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_arn>
<updates_file>\n\n" + "Where:\n"
+ " dataset_arn - the ARN of the dataset that you want to

update.\n\n"
+ " update_file - The file that includes in JSON Line updates.
\n\n";

if (args.length != 2) {
System.out.println(USAGE);
System.exit(1l);

datasetArn = args[0];
updatesFile = args[1];

try {

// Get the Rekognition client.
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)
.build();

// Update the dataset
datasetArn = updateMyDataset(rekClient, datasetArn, updatesFile);

System.out.println(String.format("Dataset updated: %s",
datasetArn));

Adding more images 360

Rekognition Custom Labels Guide

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1l);
} catch (Exception rekError) {
logger.log(Level .SEVERE, "Error: {@}", rekError.getMessage());
System.exit(1);

Creating a dataset using an existing dataset (SDK)

The following procedure shows you how to create a dataset from an existing dataset by using the
CreateDataset operation.

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to create a dataset by copying another dataset.

AWS CLI

Use the following code to create the dataset. Replace the following:

« project_arn — the ARN of the project that you want to add the dataset to.

« dataset_type — with the type of dataset (TRAIN or TEST) that you want to create in
the project.

« dataset_arn — with the ARN of the dataset that you want to copy.

aws rekognition create-dataset --project-arn project_arn \
--dataset-type dataset_type \
--dataset-source '{ "DatasetArn" : "dataset_arn" }' \
--profile custom-labels-access

Creating a dataset using an existing dataset (SDK) 361

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateDataset

Rekognition Custom Labels Guide

Python
The following example creates a dataset using an existing dataset and displays its ARN.

To run the program, supply the following command line arguments:

e project_arn— the ARN of the project that you want to use.
« dataset_type — the type of the project dataset you want to create (train or test).

« dataset_arn — the ARN of the dataset that you want to create the dataset from.

Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.

PDX-License-Identifier: MIT-@ (For details, see https://github.com/
awsdocs/amazon-rekognition-custom-labels-developer-guide/blob/master/LICENSE-
SAMPLECODE.)

import argparse
import logging
import time
import json
import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name_)

def create_dataset_from_existing_dataset(rek_client, project_arn, dataset_type,
dataset_arn):

Creates an Amazon Rekognition Custom Labels dataset using an existing
dataset.

:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.

:param project_arn: The ARN of the project in which you want to create a
dataset.

:param dataset_type: The type of the dataset that you want to create (train
or test).

:param dataset_arn: The ARN of the existing dataset that you want to use.

try:
Create the dataset

Creating a dataset using an existing dataset (SDK) 362

Rekognition Custom Labels Guide

dataset_type=dataset_type.upper()

logger.info(
"Creating %s dataset for project %s from dataset %s.",
dataset_type,project_arn, dataset_arn)

dataset_source = json.loads(
'{ "DatasetArn": "' + dataset_arn + '"}'

response = rek_client.create_dataset(
ProjectArn=project_arn, DatasetType=dataset_type,
DatasetSource=dataset_source

)

dataset_arn = response['DatasetArn']
logger.info("New dataset ARN: %s", dataset_arn)

finished = False
while finished is False:

dataset = rek_client.describe_dataset(DatasetArn=dataset_arn)
status = dataset['DatasetDescription']['Status']
if status == "CREATE_IN_PROGRESS":

logger.info(("Creating dataset: %s ", dataset_arn))
time.sleep(5)
continue

if status == "CREATE_COMPLETE":
logger.info("Dataset created: %s", dataset_arn)
finished = True
continue

if status == "CREATE_FAILED":
error_message = f'"Dataset creation failed: {status} :
{dataset_arn}"
logger.exception(error_message)
raise Exception(error_message)

Creating a dataset using an existing dataset (SDK) 363

Rekognition Custom Labels Guide

error_message = f"Failed. Unexpected state for dataset creation:
{status} : {dataset_arn}"

logger.exception(error_message)

raise Exception(error_message)

return dataset_arn

except ClientError as err:
logger.exception(
"Couldn't create dataset: %s",err.response['Error']['Message'])
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The ARN of the project in which you want to create
the dataset."

)

parser.add_argument(
"dataset_type", help="The type of the dataset that you want to create
(train or test)."

)

parser.add_argument(
"dataset_arn", help="The ARN of the dataset that you want to copy from."

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:
Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

Creating a dataset using an existing dataset (SDK) 364

Rekognition Custom Labels Guide

args = parser.parse_args()

print(
f"Creating {args.dataset_type} dataset for project
{args.project_arn}")

Create the dataset.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

dataset_arn = create_dataset_from_existing_dataset(rekognition_client,
args.project_arn,
args.dataset_type,
args.dataset_arn)

print(f"Finished creating dataset: {dataset_arn}")

except ClientError as err:
logger.exception("Problem creating dataset: %s", err)
print(f"Problem creating dataset: {err}")

except Exception as err:
logger.exception("Problem creating dataset: %s'", err)
print(f"Problem creating dataset: {err}")

if __name__ == "__main__":
main()

Java V2
The following example creates a dataset using an existing dataset and displays its ARN.

To run the program, supply the following command line arguments:

e project_arn— the ARN of the project that you want to use.
« dataset_type — the type of the project dataset you want to create (train or test).

« dataset_arn — the ARN of the dataset that you want to create the dataset from.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Creating a dataset using an existing dataset (SDK) 365

Rekognition Custom Labels Guide

*/

package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.CreateDatasetRequest;

import software.amazon.awssdk.services.rekognition.model.CreateDatasetResponse;

import software.amazon.awssdk.services.rekognition.model.DatasetDescription;

import software.amazon.awssdk.services.rekognition.model.DatasetSource;

import software.amazon.awssdk.services.rekognition.model.DatasetStatus;

import software.amazon.awssdk.services.rekognition.model.DatasetType;

import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import java.util.logging.Level;
import java.util.logging.Logger;

public class CreateDatasetExisting {

public static final Logger logger =
Logger.getlLogger(CreateDatasetExisting.class.getName());

public static String createMyDataset(RekognitionClient rekClient, String
projectArn, String datasetType,
String existingDatasetArn) throws Exception, RekognitionException {

try {

logger.log(Level.INFO, "Creating {0} dataset for project : {1} from
dataset {2} ",
new Object[] { datasetType.toString(), projectArn,
existingDatasetArn });

DatasetType requestDatasetType = null;

switch (datasetType) {

case "train":
requestDatasetType = DatasetType.TRAIN;
break;

case '"test":

Creating a dataset using an existing dataset (SDK) 366

Rekognition Custom Labels Guide

requestDatasetType = DatasetType.TEST;

break;
default:
logger.log(Level .SEVERE, "Unrecognized dataset type: {0}",
datasetType);
throw new Exception("Unrecognized dataset type: " +
datasetType);
}

DatasetSource datasetSource =
DatasetSource.builder().datasetArn(existingDatasetArn).build();

CreateDatasetRequest createDatasetRequest =
CreateDatasetRequest.builder().projectArn(projectArn)

.datasetType(requestDatasetType).datasetSource(datasetSource).build();

CreateDatasetResponse response =
rekClient.createDataset(createDatasetRequest);

boolean created = false;
//Wait until create finishes
do {
DescribeDatasetRequest describeDatasetRequest =
DescribeDatasetRequest.builder()
.datasetArn(response.datasetArn()).build();
DescribeDatasetResponse describeDatasetResponse =

rekClient.describeDataset(describeDatasetRequest);

DatasetDescription datasetDescription =
describeDatasetResponse.datasetDescription();

DatasetStatus status = datasetDescription.status();

logger.log(Level.INFO, "Creating dataset ARN: {0} ",
response.datasetArn());

switch (status) {

case CREATE_COMPLETE:

Creating a dataset using an existing dataset (SDK) 367

Rekognition

Custom Labels Guide

logger.log(Level.INFO, "Dataset created");
created = true;
break;

case CREATE_IN_PROGRESS:
Thread.sleep(5000);
break;

case CREATE_FAILED:
String error = "Dataset creation failed: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + "
response.datasetArn();
logger.log(Level .SEVERE, error);
throw new Exception(error);

default:

n +

String unexpectedError = "Unexpected creation state: " +

datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + "
response.datasetArn();
logger.log(Level .SEVERE, unexpectedError);
throw new Exception(unexpectedError);

} while (created == false);
return response.datasetArn();

} catch (RekognitionException e) {

logger.log(Level .SEVERE, "Could not create dataset: {0}",

e.getMessage());
throw e;

public static void main(String[] args) {

String datasetType = null;
String datasetArn = null;
String projectArn = null;
String datasetSourceArn = null;

n +

Creating a dataset using an existing dataset (SDK)

368

Rekognition

Custom Labels Guide

final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_type>
<dataset_arn>\n\n" + "Where:\n"

+ " project_arn - the ARN of the project that you want to add
copy the datast to.\n\n"
+ " dataset_type - the type of the dataset that you want to

create (train or test).\n\n"
+ " dataset_arn - the ARN of the dataset that you want to copy
from.\n\n";

if (args.length != 3) {
System.out.println(USAGE);
System.exit(1l);

projectArn = args[0];
datasetType = args[1];
datasetSourceArn = args[2];

try {

// Get the Rekognition client
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))
.region(Region.US_WEST_2)
.build();

// Create the dataset
datasetArn = createMyDataset(rekClient, projectArn, datasetType,
datasetSourceArn);

System.out.println(String.format("Created dataset: %s",
datasetArn));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1l);
} catch (Exception rekError) {
logger.log(Level .SEVERE, "Error: {@}", rekError.getMessage());
System.exit(1);

Creating a dataset using an existing dataset (SDK) 369

Rekognition Custom Labels Guide

Describing a dataset (SDK)

You can use the DescribeDataset API to get information about a dataset.
To describe a dataset (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to describe a dataset.

AWS CLI

Change the value of dataset-arn to the ARN of the dataset that you want to describe.

aws rekognition describe-dataset --dataset-arn dataset_arn \
--profile custom-labels-access

Python
Use the following code. Supply the following command line parameters:

» dataset_arn — the ARN of the dataset that you want to describe.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose
Shows how to describe an Amazon Rekognition Custom Labels dataset.

import argparse
import logging
import boto3

Describing a dataset (SDK) 370

Rekognition Custom Labels Guide

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def describe_dataset(rek_client, dataset_arn):
Describes an Amazon Rekognition Custom Labels dataset.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param dataset_arn: The ARN of the dataset that you want to describe.

try:
Describe the dataset
logger.info("Describing dataset %s'", dataset_arn)

dataset = rek_client.describe_dataset(DatasetArn=dataset_arn)
description = dataset['DatasetDescription']

print(f"Created: {str(description['CreationTimestamp'])}")
print(f"Updated: {str(description['LastUpdatedTimestamp'])}")
print(f"Status: {description['Status']}")
print(f"Status message: {description['StatusMessage']}")
print(f"Status code: {description['StatusMessageCode']}")
print("Stats:")
print(

f'"\tLabeled entries: {description['DatasetStats']

['LabeledEntries']}")

print(

f"\tTotal entries: {description['DatasetStats']['TotalEntries']}")
print(f"\tTotal labels: {description['DatasetStats']['TotallLabels']}")

except ClientError as err:
logger.exception("Couldn't describe dataset: %s",
err.response['Error']['Message'])
raise

def add_arguments(parser):

Adds command line arguments to the parser.
:param parser: The command line parser.

Describing a dataset (SDK) 371

Rekognition Custom Labels Guide

parser.add_argument(
"dataset_arn", help="The ARN of the dataset that you want to describe."

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Describing dataset {args.dataset_arn}")

Describe the dataset.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

describe_dataset(rekognition_client, args.dataset_azrn)
print(f"Finished describing dataset: {args.dataset_arn}")

except ClientError as err:
error_message=f"Problem describing dataset: {err}"
logger.exception(error_message)
print(error_message)

except Exception as err:
error_message = f"Problem describing dataset: {err}"
logger.exception(error_message)
print(error_message)

if __name__ == "__main__":
main()

Describing a dataset (SDK) 372

Rekognition Custom Labels Guide

Java V2

« dataset_arn — the ARN of the dataset that you want to describe.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.DatasetDescription;

import software.amazon.awssdk.services.rekognition.model.DatasetStats;

import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import java.util.logging.Level;
import java.util.logging.lLogger;

public class DescribeDataset {

public static final Logger logger =
Logger.getlLogger(DescribeDataset.class.getName());

public static void describeMyDataset(RekognitionClient rekClient, String
datasetArn) {

try {

DescribeDatasetRequest describeDatasetRequest =
DescribeDatasetRequest.builder().datasetArn(datasetArn)
.build();
DescribeDatasetResponse describeDatasetResponse =
rekClient.describeDataset(describeDatasetRequest);

DatasetDescription datasetDescription =
describeDatasetResponse.datasetDescription();

Describing a dataset (SDK) 373

Rekognition Custom Labels Guide

DatasetStats datasetStats = datasetDescription.datasetStats();

System.out.println("ARN: " + datasetArn);
System.out.println("Created: " +
datasetDescription.creationTimestamp().toString());
System.out.println("Updated: " +
datasetDescription.lastUpdatedTimestamp().toString());
System.out.println("Status: " +
datasetDescription.statusAsString());
System.out.println("Message: " +
datasetDescription.statusMessage());
System.out.println("Total Labels: " +
datasetStats.totallLabels().toString());
System.out.println("Total entries: " +
datasetStats.totalEntries().toString());
System.out.println("Entries with labels: " +
datasetStats.labeledEntries().toString());
System.out.println("Entries with at least 1 error: " +
datasetStats.errorEntries().toString());

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",

rekError.getMessage());
throw rekError;

public static void main(String[] args) {
final String USAGE = "\n" + "Usage: " + '"<dataset_arn>\n\n" + "Where:\n"
+ " dataset_arn - The ARN of the dataset that you want to
describe.\n\n";
if (args.length != 1) {

System.out.println(USAGE);
System.exit(1);

String datasetArn = args[0];

try {

// Get the Rekognition client.

Describing a dataset (SDK) 374

Rekognition Custom Labels Guide

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Describe the dataset.
describeMyDataset(rekClient, datasetArn);

rekClient.close();
} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",

rekError.getMessage());
System.exit(1l);

Listing dataset entries (SDK)

You can use the ListDatasetEntries API to list the JSON lines for each image in a dataset. For
more information, see Creating a manifest file.

To list dataset entries (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code list the entries in a dataset

AWS CLI

Change the value of dataset-arn to the ARN of the dataset that you want to list.

aws rekognition list-dataset-entries --dataset-arn dataset_arn \
--profile custom-labels-access

To list only JSON lines with errors, specify has-errors.

Listing dataset entries (SDK) 375

Rekognition Custom Labels Guide

aws rekognition list-dataset-entries --dataset-arn dataset_arn \
--has-errors \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

» dataset_arn — the ARN of the dataset that you want to list.

« show_errors_only — specify true if you want to see errors only. false otherwise.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose
Shows how to list the entries in an Amazon Rekognition Custom Labels dataset.

import argparse
import logging
import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name_)

def list_dataset_entries(rek_client, dataset_arn, show_errors):
Lists the entries in an Amazon Rekognition Custom Labels dataset.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param dataset_arn: The ARN of the dataet that you want to use.

try:
List the entries.
logger.info("Listing dataset entries for the dataset %s.", dataset_arn)

finished = False
count = 0

Listing dataset entries (SDK) 376

Rekognition Custom Labels Guide

next_token = ""
show_errors_only = False

if show_errors.lower() == "true":
show_errors_only = True

while finished is False:

response = rek_client.list_dataset_entries(
DatasetArn=dataset_azrn,
HasErrors=show_errors_only,
MaxResults=100,
NextToken=next_token)

count += len(response['DatasetEntries'])

for entry in response['DatasetEntries']:
print(entry)

if 'NextToken' not in response:
finished = True
logger.info("No more entries. Total:%s", count)
else:
next_token = next_token = response['NextToken']
logger.info("Getting more entries. Total so far :%s", count)

except ClientError as err:
logger.exception(
"Couldn't list dataset: %s",
err.response['Error']['Message'])
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"dataset_arn", help="The ARN of the dataset that you want to list."

Listing dataset entries (SDK) 377

Rekognition Custom Labels Guide

parser.add_argument(
"show_errors_only", help="true if you want to see errors only. false
otherwise."

)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Listing entries for dataset {args.dataset_arn}")

List the dataset entries.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

list_dataset_entries(rekognition_client,
args.dataset_arn,
args.show_errors_only)

print(f"Finished listing entries for dataset: {args.dataset_arn}")

except ClientError as err:
error_message = f"Problem listing dataset: {err}"
logger.exception(error_message)
print(error_message)

except Exception as err:
error_message = f"Problem listing dataset: {err}"
logger.exception(error_message)
print(error_message)

if __name__ == "__main__":
main()

Listing dataset entries (SDK) 378

Rekognition Custom Labels Guide

Java V2

Use the following code. Supply the following command line parameters:

« dataset_arn — the ARN of the dataset that you want to list.

« show_errors_only — specify true if you want to see errors only. false otherwise.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;
import software.amazon.awssdk.services.rekognition.RekognitionClient;
import
software.amazon.awssdk.services.rekognition.model.ListDatasetEntriesRequest;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;
import
software.amazon.awssdk.services.rekognition.paginators.ListDatasetEntriesIterable;

import java.net.URI;
import java.util.logging.Llevel;
import java.util.logging.Logger;

public class ListDatasetEntries {

public static final Logger logger =
Logger.getlLogger(ListDatasetEntries.class.getName());

public static void listMyDatasetEntries(RekognitionClient rekClient, String

datasetArn, boolean showErrorsOnly)
throws Exception, RekognitionException {

try {

logger.log(Level.INFO, "Listing dataset {@3}", new Object[]
{ datasetArn });

Listing dataset entries (SDK) 379

Rekognition Custom Labels Guide

ListDatasetEntriesRequest listDatasetEntriesRequest =
ListDatasetEntriesRequest.builder()

.hasErrors(showErrorsOnly).datasetArn(datasetArn).maxResults(1l).build();

ListDatasetEntriesIterable datasetEntriesList = rekClient
.listDatasetEntriesPaginator(listDatasetEntriesRequest);

datasetEntriesList.stream().flatMap(r ->
r.datasetEntries().stream())
.forEach(datasetEntry ->
System.out.println(datasetEntry.toString()));

} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not update dataset: {0}",
e.getMessage());
throw e;

public static void main(String args[]) {

boolean showErrorsOnly = false;
String datasetArn = null;

final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_arn>
<updates_file>\n\n" + "Where:\n"
+ " dataset_arn - the ARN of the dataset that you want to

update.\n\n"
+ " show_errors_only - true to show only errors. false
otherwise.\n\n";

if (args.length != 2) {

System.out.println(USAGE);
System.exit(1);

datasetArn = args[0];
if (args[1l].tolLowerCase().equals("true")) {

showErrorsOnly = true;

Listing dataset entries (SDK) 380

Rekognition Custom Labels Guide

try {

// Get the Rekognition client.
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-

labels-access"))
.region(Region.US_WEST_2)
.build();

// list the dataset entries.
listMyDatasetEntries(rekClient, datasetArn, showErrorsOnly);

System.out.println(String.format("Finished listing entries for :
%s", datasetArn));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);
} catch (Exception rekError) {
logger.log(Level .SEVERE, "Error: {0}", rekError.getMessage());

System.exit(1l);

Distributing a training dataset (SDK)

Amazon Rekognition Custom Labels requires a training dataset and a test dataset to train your
model.

If you are using the API, you can use the DistributeDatasetEntries API to distribute 20% of the
training dataset into an empty test dataset. Distributing the training dataset can be useful if
you only have a single manifest file available. Use the single manifest file to create your training

Distributing a training dataset (SDK) 381

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DistributeDatasetEntries

Rekognition Custom Labels Guide

dataset. Then create an empty test dataset and use DistributeDatasetEntries to populate
the test dataset.

(® Note

If you are using the Amazon Rekognition Custom Labels console and start with a single
dataset project, Amazon Rekognition Custom Labels splits (distributes) the training dataset,
during training, to create a test dataset. 20% of the training dataset entries are moved to
the test dataset.

To distribute a training dataset (SDK)

1.

If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

Create a project. For more information, see Creating an Amazon Rekognition Custom Labels
project (SDK).

Create your training dataset. For information about datasets, see Creating training and test
datasets.

Create an empty test dataset.

Use the following example code to distribute 20% of the training dataset entries into the test
dataset. You can get the Amazon Resource Names (ARN) for a project's datasets by calling
DescribeProjects. For example code, see Describing a project (SDK).

AWS CLI

Change the value of training_dataset-arnand test_dataset_arn with the ARNS of
the datasets that you want to use.

aws rekognition distribute-dataset-entries --datasets ['{"Arn":
"training_dataset_arn"}, {"Arn": "test_dataset_arn"}'] \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

« training_dataset_arn — the ARN of the training dataset that you distribute entries from.

Distributing a training dataset (SDK) 382

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjects

Rekognition

Custom Labels Guide

» test_dataset_arn — the ARN of the test dataset that you distribute entries to.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

import
import
import
import
import

argparse
logging
time
json
boto3

from botocore.exceptions import ClientError

logger

= logging.getLogger(__name__)

def check_dataset_status(rek_client, dataset_arn):

Checks the current status of a dataset.

:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.

:param dataset_arn: The dataset that you want to check.
:return: The dataset status and status message.

finished = False
status = ""
status_message = ""

while finished is False:

dataset = rek_client.describe_dataset(DatasetArn=dataset_arn)

status = dataset['DatasetDescription']['Status']
status_message = dataset['DatasetDescription']['StatusMessage']

if status == "UPDATE_IN_PROGRESS":
logger.info("Distributing dataset: %s ", dataset_arn)

time.sleep(5)
continue

if status == "UPDATE_COMPLETE":
logger.info(

Distributing a training dataset (SDK)

383

Rekognition Custom Labels Guide

"Dataset distribution complete: %s : %s : %s",
status, status_message, dataset_arn)
finished = True
continue

if status == "UPDATE_FAILED":
logger.exception(
"Dataset distribution failed: %s : %s : %s",
status, status_message, dataset_arn)
finished = True
break

logger.exception(
"Failed. Unexpected state for dataset distribution: %s : %s : %s",
status, status_message, dataset_arn)
finished = True
status_message = "An unexpected error occurred while distributing the
dataset"
break

return status, status_message

def distribute_dataset_entries(rek_client, training_dataset_arn,
test_dataset_arn):

Distributes 20% of the supplied training dataset into the supplied test
dataset.

:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.

:param training_dataset_arn: The ARN of the training dataset that you
distribute entries from.

:param test_dataset_arn: The ARN of the test dataset that you distribute
entries to.

try:
List dataset labels.
logger.info("Distributing training dataset entries (%s) into test
dataset (%s).",
training_dataset_arn,test_dataset_azrn)

datasets = json.loads(

Distributing a training dataset (SDK) 384

Rekognition Custom Labels Guide

"[{"An" : "' + str(training_dataset_arn) + '"},{"An" : "' +
str(test_dataset_arn) + '"}]1')

rek_client.distribute_dataset_entries(
Datasets=datasets

training_dataset_status, training_dataset_status_message =
check_dataset_status(
rek_client, training_dataset_arn)
test_dataset_status, test_dataset_status_message = check_dataset_status(
rek_client, test_dataset_arn)

if training_dataset_status == 'UPDATE_COMPLETE' and test_dataset_status
== "UPDATE_COMPLETE":
print("Distribution complete")
else:
print("Distribution failed:")
print(
f"\ttraining dataset: {training_dataset_status} :
{training_dataset_status_messagel}")
print(
f"\ttest dataset: {test_dataset_status} :
{test_dataset_status_messagel}")

except ClientError as err:
logger.exception(
"Couldn't distribute dataset: %s",err.response['Error']['Message'])
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"training_dataset_arn", help="The ARN of the training dataset that you
want to distribute from."

)

parser.add_argument(

Distributing a training dataset (SDK) 385

Rekognition Custom Labels Guide

"test_dataset_arn", help="The ARN of the test dataset that you want to
distribute to."

)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(
f"Distributing training dataset entries
({args.training_dataset_arn}) "\
f"into test dataset ({args.test_dataset_arn}).")

Distribute the datasets.

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

distribute_dataset_entries(rekognition_client,
args.training_dataset_arn,
args.test_dataset_arn)

print("Finished distributing datasets.")

except ClientError as err:

logger.exception("Problem distributing datasets: %s", err)
print(f"Problem listing dataset labels: {err}")

except Exception as err:
logger.exception("Problem distributing datasets: %s", err)

print(f"Problem distributing datasets: {err}")

if __name__ == "__main__":
main()

Distributing a training dataset (SDK) 386

Rekognition

Custom Labels Guide

Java V2

Use the following code. Supply the following command line parameters:

« training_dataset_arn — the ARN of the training dataset that you distribute entries from.

« test_dataset_arn — the ARN of the test dataset that you distribute entries to.

/*

Copyright Amazon.com, Inc.
SPDX-License-Identifier: Apache-2.0

*/

or its affiliates. All Rights Reserved.

package com.example.rekognition;

import
import
import
import
import
import
import

software.
software.
software.
software.
software.
software.

amazon.
amazon.
amazon.
amazon.
amazon.
amazon.

awssdk.
awssdk.
awssdk.
awssdk.
awssdk.
awssdk.

services
services
services
services

.rekognition.
.rekognition.
.rekognition.
.rekognition.

software.amazon.awssdk.services.rekognition.model.

import software.amazon.awssdk.services.rekognition.

import

software.amazon.awssdk.services.rekognition.model.

import software.amazon.awssdk.services.rekognition.

import java.util.Arraylist;
import java.util.logging.level;
import java.util.logging.Logger;

public class DistributeDatasetEntries {

public static final Logger logger
Logger.getlLogger(DistributeDatasetEntries.class.getName());

auth.credentials.ProfileCredentialsProvider;
regions.Region;

RekognitionClient;
model.DatasetDescription;
model .DatasetStatus;
model.DescribeDatasetRequest;

DescribeDatasetResponse;
model.DistributeDataset;

DistributeDatasetEntriesRequest;
model.RekognitionException;

public static DatasetStatus checkDatasetStatus(RekognitionClient rekClient,

String datasetArn)
throws Exception, RekognitionException {

boolean distributed = false;
DatasetStatus status

= null;

Distributing a training dataset (SDK)

387

Rekognition Custom Labels Guide

// Wait until distribution completes

do {

DescribeDatasetRequest describeDatasetRequest =
DescribeDatasetRequest.builder().datasetArn(datasetArn)
.build();
DescribeDatasetResponse describeDatasetResponse =
rekClient.describeDataset(describeDatasetRequest);

DatasetDescription datasetDescription =
describeDatasetResponse.datasetDescription();

status = datasetDescription.status();
logger.log(Level.INFO, " dataset ARN: {0} ", datasetArn);
switch (status) {
case UPDATE_COMPLETE:
logger.log(Level.INFO, "Dataset updated");
distributed = true;
break;
case UPDATE_IN_PROGRESS:
Thread.sleep(5000);

break;

case UPDATE_FAILED:

String error = "Dataset distribution failed: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " + datasetArn;
logger.log(Level .SEVERE, error);
break;
default:
String unexpectedError = "Unexpected distribution state: " +
datasetDescription.statusAsString() + " "
+ datasetDescription.statusMessage() + " " + datasetArn;

logger.log(Level .SEVERE, unexpectedError);

Distributing a training dataset (SDK) 388

Rekognition Custom Labels Guide

} while (distributed == false);

return status;

public static void distributeMyDatasetEntries(RekognitionClient rekClient,
String trainingDatasetAzn,
String testDatasetArn) throws Exception, RekognitionException {

try {

logger.log(Level.INFO, "Distributing {0} dataset to {1} ",
new Object[] { trainingDatasetArn, testDatasetArn });

DistributeDataset distributeTrainingDataset =
DistributeDataset.builder().arn(trainingDatasetArn).build();

DistributeDataset distributeTestDataset =
DistributeDataset.builder().arn(testDatasetArn).build();

Arraylist<DistributeDataset> datasets = new ArraylList();

datasets.add(distributeTrainingDataset);
datasets.add(distributeTestDataset);

DistributeDatasetEntriesRequest distributeDatasetEntriesRequest =
DistributeDatasetEntriesRequest.builder()
.datasets(datasets).build();

rekClient.distributeDatasetEntries(distributeDatasetEntriesRequest);

DatasetStatus trainingStatus = checkDatasetStatus(rekClient,
trainingDatasetAzrn);

DatasetStatus testStatus = checkDatasetStatus(rekClient,
testDatasetArn);

if (trainingStatus == DatasetStatus.UPDATE_COMPLETE && testStatus ==
DatasetStatus.UPDATE_COMPLETE) {

logger.log(Level.INFO, "Successfully distributed dataset: {@}",
trainingDatasetArn);

} else {

Distributing a training dataset (SDK) 389

Rekognition Custom Labels Guide

throw new Exception("Failed to distribute dataset: " +
trainingDatasetAzrn);

}

} catch (RekognitionException e) {
logger.log(Level.SEVERE, "Could not distribute dataset: {@}",
e.getMessage());
throw e;

public static void main(String[] args) {

String trainingDatasetArn = null;
String testDatasetArn = null;

final String USAGE = "\n" + "Usage: " + "<training_dataset_arn>
<test_dataset_arn>\n\n" + "Where:\n"

+ " training_dataset_arn - the ARN of the dataset that you
want to distribute from.\n\n"
+ " test_dataset_arn - the ARN of the dataset that you want to

distribute to.\n\n";

if (args.length != 2) {
System.out.println(USAGE);
System.exit(1l);

trainingDatasetArn = args[0];
testDatasetArn = args[1l];

try {

// Get the Rekognition client.
RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))
.region(Region.US_WEST_2)
.build();

// Distribute the dataset
distributeMyDatasetEntries(rekClient, trainingDatasetArn,
testDatasetArn);

Distributing a training dataset (SDK) 390

Rekognition Custom Labels Guide

System.out.println("Datasets distributed.");
rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);
} catch (Exception rekError) {
logger.log(Level .SEVERE, "Error: {@}", rekError.getMessage());
System.exit(1l);

Deleting a dataset

You can delete the training and test datasets from a project.

Topics

» Deleting a dataset (Console)

» Deleting an Amazon Rekognition Custom Labels dataset (SDK)

Deleting a dataset (Console)

Use the following procedure to delete a dataset. Afterwards, if the project has one remaining
dataset (train or test), the project details page is shown. If the project has no remaining datasets,
the Create dataset page is shown.

If you delete the training dataset, you must create a new training dataset for the project before you
can train a model. For more information, see Creating training and test datasets with images.

If you delete the test dataset, you can train a model without creating a new test dataset. During
training, the training dataset is split to create a new test dataset for the project. Splitting the
training dataset reduces the number of images available for training. To maintain quality, we

Deleting a dataset 391

Rekognition Custom Labels Guide

recommend creating a new test dataset before training a model. For more information, see Adding
a dataset to a project.

To delete a dataset

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. In the left pane, choose Use Custom Labels. The Amazon Rekognition Custom Labels landing
page is shown.

In the left navigation pane, choose Projects. The Projects view is shown.
Choose the project that contains the dataset that you want to delete.

In the left navigation pane, under the project name, choose Dataset
Choose Actions

To delete the training dataset, choose Delete training dataset.

To delete the test dataset, choose Delete test dataset.

©o © N o u &~ W

In the Delete train or test dataset dialog box, enter delete to confirm that you want to delete
the dataset.

10. Choose Delete train or test dataset to delete the dataset.

Deleting an Amazon Rekognition Custom Labels dataset (SDK)

You delete an Amazon Rekognition Custom Labels dataset by calling DeleteDataset and supplying
the Amazon Resource Name (ARN) of the dataset that you want to delete. To get the ARNSs of the
training and test datasets within a project, call DescribeProjects. The response includes an array of
ProjectDescription objects. The dataset ARNs (DatasetArn) and dataset types (DatasetType) are
in the Datasets list.

If you delete the training dataset, you need to create a new training dataset for the project before
you can train a model. If you delete the test dataset, you need to create a new test dataset before
you can train the model. For more information, see Adding a dataset to a project (SDK).

To delete a dataset (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following code to delete a dataset.

Deleting a dataset 392

https://console.aws.amazon.com/rekognition/
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteDataset
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjects
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ProjectDescription

Rekognition Custom Labels Guide

AWS CLI

Change the value of dataset-arn with the ARN of the dataset that you want to delete.

aws rekognition delete-dataset --dataset-arn dataset-arn \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

» dataset_arn — the ARN of the dataset that you want to delete.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Shows how to delete an Amazon Rekognition Custom Labels dataset.
import argparse

import logging

import time

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def delete_dataset(rek_client, dataset_arn):
Deletes an Amazon Rekognition Custom Labels dataset.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param dataset_arn: The ARN of the dataset that you want to delete.

try:
Delete the dataset,
logger.info("Deleting dataset: %s", dataset_arn)

Deleting a dataset 393

Rekognition Custom Labels Guide

rek_client.delete_dataset(DatasetArn=dataset_arn)
deleted = False
logger.info("waiting for dataset deletion %s", dataset_arn)

Dataset might not be deleted yet, so wait.
while deleted is False:
try:
rek_client.describe_dataset(DatasetArn=dataset_azrn)
time.sleep(5)
except ClientError as err:
if err.response['Error']['Code'] == 'ResourceNotFoundException':
logger.info("dataset deleted: %s", dataset_azrn)
deleted = True
else:
raise

logger.info("dataset deleted: %s", dataset_arn)

return True

except ClientError as err:
logger.exception("Couldn't delete dataset - %s: %s",
dataset_arn, err.response['Error']['Message'])
raise

def add_arguments(parser):

Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"dataset_arn", help="The ARN of the dataset that you want to delete."

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

Deleting a dataset 394

Rekognition Custom Labels Guide

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(f"Deleting dataset: {args.dataset_arn}")

Delete the dataset.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

delete_dataset(rekognition_client,
args.dataset_arn)

print(f"Finished deleting dataset: {args.dataset_arn}")

except ClientError as err:
error_message = f"Problem deleting dataset: {err}"
logger.exception(error_message)
print(error_message)

if __name__ == "__main__":
main()

Java V2

Use the following code. Supply the following command line parameters:

 dataset_arn — the ARN of the dataset that you want to delete.

/-k
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import java.util.logging.lLevel;
import java.util.logging.lLogger;

Deleting a dataset 395

Rekognition Custom Labels Guide

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import software.amazon.awssdk.services.rekognition.model.DeleteDatasetRequest;
import software.amazon.awssdk.services.rekognition.model.DeleteDatasetResponse;
import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;

public class DeleteDataset {

public static final Logger logger =
Logger.getLogger(DeleteDataset.class.getName());

public static void deleteMyDataset(RekognitionClient rekClient, String
datasetArn) throws InterruptedException {

try {

logger.log(Level.INFO, "Deleting dataset: {0}", datasetArn);

// Delete the dataset

DeleteDatasetRequest deleteDatasetRequest =
DeleteDatasetRequest.builder().datasetArn(datasetArn).build();

DeleteDatasetResponse response =
rekClient.deleteDataset(deleteDatasetRequest);

// Wait until deletion finishes
DescribeDatasetRequest describeDatasetRequest =
DescribeDatasetRequest.builder().datasetArn(datasetArn)

.build();

Boolean deleted = false;

do {

try {

rekClient.describeDataset(describeDatasetRequest);
Thread.sleep(5000);

} catch (RekognitionException e) {
String errorCode = e.awsErrorDetails().errorCode();

Deleting a dataset 396

Rekognition Custom Labels Guide

if (errorCode.equals("ResourceNotFoundException")) {
logger.log(Level.INFO, "Dataset deleted: {@}",
datasetArn);
deleted = true;
} else {
logger.log(Level .SEVERE, "Client error occurred: {@}",
e.getMessage());
throw e;

} while (Boolean.FALSE.equals(deleted));
logger.log(Level.INFO, "Dataset deleted: {0} ", datasetArn);
} catch (
RekognitionException e) {
logger.log(Level .SEVERE, "Client error occurred: {@}",

e.getMessage());
throw e;

public static void main(String args[]) {

final String USAGE = "\n" + "Usage: " + '"<dataset_arn>\n\n" + "Where:\n"
+ " dataset_arn - The ARN of the dataset that you want to
delete.\n\n";

if (args.length != 1) {

System.out.println(USAGE);
System.exit(1);

String datasetArn = args[0];

try {

// Get the Rekognition client.
RekognitionClient rekClient = RekognitionClient.builder()

Deleting a dataset 397

Rekognition Custom Labels Guide

.credentialsProvider(ProfileCredentialsProvider.create("custom-

labels-access"))
.region(Region.US_WEST_2)
.build();

// Delete the dataset
deleteMyDataset(rekClient, datasetArn);

System.out.println(String.format("Dataset deleted: %s",
datasetArn));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",

rekError.getMessage());
System.exit(1l);

catch (InterruptedException intError) {
logger.log(Level .SEVERE, "Exception while sleeping: {0}",
intError.getMessage());
System.exit(1l);

Managing an Amazon Rekognition Custom Labels model

An Amazon Rekognition Custom Labels model is a mathematical model that predicts the presence
of objects, scenes, and concepts in new images. It does this by finding patterns in images used to
train the model. This section shows you how to train a model, evaluate its performance, and make
improvements. It also shows you how to make a model available for use and how to delete a model
when you no longer need it.

Topics

» Deleting an Amazon Rekognition Custom Labels model

Managing a model 398

Rekognition Custom Labels Guide

» Tagging a model

» Describing a model (SDK)

« Copying an Amazon Rekognition Custom Labels model (SDK)

Deleting an Amazon Rekognition Custom Labels model

You can delete a model by using the Amazon Rekognition Custom Labels console or by using the
DeleteProjectVersion API. You can't delete a model if it is running or if it is training. To stop a

running model, use the StopProjectVersion API. For more information, see Stopping an Amazon

Rekognition Custom Labels model (SDK). If a model is training, wait until it finishes before you

delete the model.

A deleted model can't be undeleted.

Topics

» Deleting an Amazon Rekognition Custom Labels model (Console)

» Deleting an Amazon Rekognition Custom Labels model (SDK)

Deleting an Amazon Rekognition Custom Labels model (Console)

The following procedure shows how to delete a model from a project details page. You can also
delete a model from a model's detail page.

To delete a model (console)

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Use Custom Labels.
Choose Get started.

In the left navigation pane, choose Projects.

i kA W

Choose the project that contains the model that you want to delete. The project details page
opens.

6. Inthe Models section, select the models that you want to delete.

Deleting a model 399

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StopProjectVersion
https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

® Note

If the model can't be selected, the model is either running or is training, and can't be
deleted. Check the Status field and try again after stopping the running model, or wait
until training finishes.

7. Choose Delete model and the Delete model dialog box is shown.
8. Enter delete to confirm deletion.

9. Choose Delete to delete the model. Deleting the model might take a while to complete.

® Note

If you Close the dialog box during model deletion, the models are still deleted.

Deleting an Amazon Rekognition Custom Labels model (SDK)

You delete an Amazon Rekognition Custom Labels model by calling DeleteProjectVersion and

supplying the Amazon Resource Name (ARN) of the model that you want to delete. You can get the
model ARN from the Use your model section of the model details page in the Amazon Rekognition
Custom Labels console. Alternatively, call DescribeProjectVersions and supply the following.

« The ARN of the project (ProjectAxrn) that the model is associated with.

e The version name (VersionNames) of the model.

The model ARN is the ProjectVersionArn field in the ProjectVersionDescription object, from the

DescribeProjectVersions response.

You can't delete a model if it is running or is training. To determine if the model is running
or training, call DescribeProjectVersions and check the Status field of the model's

ProjectVersionDescription object. To stop a running model, use the StopProjectVersion API. For

more information, see Stopping an Amazon Rekognition Custom Labels model (SDK). You have to

wait for a model to finishing training before you can delete it.

Deleting a model 400

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ProjectVersionDescription
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ProjectVersionDescription
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StopProjectVersion

Rekognition Custom Labels Guide

To delete a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following code to delete a model.

AWS CLI

Change the value of project-version-arn to the name of the project that you want to
delete.

aws rekognition delete-project-version --project-version-arn model_arn \
--profile custom-labels-access

Python
Supply the following command line parameters

« project_arn -the ARN of the project that contains the model that you want to delete.

« model_arn -the ARN of the model version that you want to delete.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose
Shows how to delete an existing Amazon Rekognition Custom Labels model.

import argparse

import logging

import time

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name_)

def find_forward_slash(input_string, n):

Deleting a model 401

Rekognition Custom Labels Guide

Returns the location of '/' after n number of occurences.
:param input_string: The string you want to search
n: the occurence that you want to find.
position = input_string.find('/")
while position >= @ and n > 1:
position = input_string.find('/', position + 1)
n -=1
return position

def delete_model(rek_client, project_arn, model_arn):
Deletes an Amazon Rekognition Custom Labels model.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param model_arn: The ARN of the model version that you want to delete.

try:
Delete the model
logger.info("Deleting dataset: {%s}", model_arn)

rek_client.delete_project_version(ProjectVersionArn=model_axrn)

Get the model version name

start = find_forward_slash(model_arn, 3) + 1
end = find_forward_slash(model_arn, 4)
version_name = model_arn[start:end]

deleted = False

model might not be deleted yet, so wait deletion finishes.
while deleted is False:
describe_response =
rek_client.describe_project_versions(ProjectArn=project_azrn,

VersionNames=[version_name])
if len(describe_response['ProjectVersionDescriptions']) ==
deleted = True
else:
logger.info("Waiting for model deletion %s", model_arn)
time.sleep(5)

logger.info("model deleted: %s", model_azrn)

Deleting a model 402

Rekognition Custom Labels Guide

return True

except ClientError as err:
logger.exception("Couldn't delete model - %s: %s",
model_arn, err.response['Error']['Message'])

raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The ARN of the project that contains the model that
you want to delete."

)

parser.add_argument(
"model_arn", help="The ARN of the model version that you want to
delete."

)

def confirm_model_deletion(model_azrn):
Confirms deletion of the model. Returns True if delete entered.
:param model_arn: The ARN of the model that you want to delete.

print(f"Are you sure you wany to delete model {model_arn} ?\n", model_arn)

start = input("Enter delete to delete your model: ")
if start == "delete":

return True
else:

return False

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

Deleting a model 403

Rekognition Custom Labels Guide

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

if confirm_model_deletion(args.model_arn) is True:
print(f"Deleting model: {args.model_arn}")

Delete the model.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

delete_model(rekognition_client,
args.project_arn,
args.model_arn)

print(f"Finished deleting model: {args.model_arn}")
else:

print(f"Not deleting model {args.model_arn}")

except ClientError as err:
print(f"Problem deleting model: {err}")

if __name__ == "__main__":
main()

Java V2

e project_arn-the ARN of the project that contains the model that you want to delete.

« model_arn - the ARN of the model version that you want to delete.

//Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
//PDX-License-Identifier: MIT-@ (For details, see https://github.com/
awsdocs/amazon-rekognition-custom-labels-developer-guide/blob/master/LICENSE-
SAMPLECODE.)

import java.net.URI;
import java.util.logging.Level;

Deleting a model 404

Rekognition Custom Labels Guide

import java.util.logging.Logger;
import software.amazon.awssdk.services.rekognition.RekognitionClient;

import
software.amazon.awssdk.services.rekognition.model.DeleteProjectVersionRequest;
import
software.amazon.awssdk.services.rekognition.model.DeleteProjectVersionResponse;
import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsRequest;
import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsResponse;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;

public class DeleteModel {

public static final Logger logger =
Logger.getLogger(DeleteModel.class.getName());

public static int findForwardSlash(String modelArn, int n) {

int start = modelArn.indexOf('/"');

while (start >= 0 & n > 1) {
start = modelArn.indexOf('/', start + 1);
n-=1;

}

return start;

public static void deleteMyModel(RekognitionClient rekClient, String
projectArn, String modelAzrn)
throws InterruptedException {

try {
logger.log(Level.INFO, "Deleting model: {@}", projectArn);
// Delete the model
DeleteProjectVersionRequest deleteProjectVersionRequest =

DeleteProjectVersionRequest.builder()
.projectVersionArn(modelArn).build();

Deleting a model 405

Rekognition Custom Labels Guide

DeleteProjectVersionResponse response =
rekClient.deleteProjectVersion(deleteProjectVersionRequest);

logger.log(Level.INFO, "Status: {@}", response.status());
// Get the model version

int start = findForwardSlash(modelArn, 3) + 1;
int end = findForwardSlash(modelArn, 4);

String versionName = modelArn.substring(start, end);
Boolean deleted = false;
DescribeProjectVersionsRequest describeProjectVersionsRequest =
DescribeProjectVersionsRequest.builder()
.projectArn(projectArn).versionNames(versionName).build();
// Wait until model is deleted.

do {

DescribeProjectVersionsResponse describeProjectVersionsResponse
= rekClient

.describeProjectVersions(describeProjectVersionsRequest);

if
(describeProjectVersionsResponse.projectVersionDescriptions().size()==0) {
logger.log(Level.INFO, "Waiting for model deletion: {@}",
modelArn);
Thread.sleep(5000);
} else {
deleted = true;
logger.log(Level.INFO, "Model deleted: {0}", modelArn);

} while (Boolean.FALSE.equals(deleted));
logger.log(Level.INFO, "Model deleted: {03}", modelArn);
} catch (

RekognitionException e) {

Deleting a model 406

Rekognition Custom Labels Guide

logger.log(Level .SEVERE, "Client error occurred: {0}",
e.getMessage());
throw e;

public static void main(String args[]) {

final String USAGE = "\n" + "Usage: " + "<project_arn> <model_arn>\n\n"

+ "Where:\n"

+ " project_arn - The ARN of the project that contains the
model that you want to delete.\n\n"

+ " model_version - The ARN of the model that you want to

delete.\n\n";

if (args.length != 2) {
System.out.println(USAGE);
System.exit(1l);

String projectArn = args[0];
String modelVersion = args[1];
try {
RekognitionClient rekClient = RekognitionClient.buildexr().build();

// Delete the model
deleteMyModel(rekClient, projectArn, modelVersion);

System.out.println(String.format("model deleted: %s",
modelVersion));

rekClient.close();
} catch (RekognitionException rekError) {

logger.log(Level .SEVERE, "Rekognition client error: {0}"
rekError.getMessage());

System.exit(1l);

catch (InterruptedException intError) {

Deleting a model 407

Rekognition Custom Labels Guide

logger.log(Level .SEVERE, "Exception while sleeping: {0}",
intError.getMessage());
System.exit(1);
}

Tagging a model

You can identify, organize, search for, and filter your Amazon Rekognition models by using tags.
Each tag is a label consisting of a user-defined key and value. For example, to help determine
billing for your models, tag your models with a Cost center key and add the appropriate cost
center number as a value. For more information, see Tagging AWS resources.

Use tags to:

« Track billing for a model by using cost allocation tags. For more information, see Using Cost
Allocation Tags.

» Control access to a model by using Identity and Access Management (IAM). For more information,
see Controlling access to AWS resources using resource tags.

« Automate model management. For example, you can run automated start or stop scripts that
turn off development models during non-business hours to reduce costs. For more information,
see Running a trained Amazon Rekognition Custom Labels model.

You can tag models by using the Amazon Rekognition console or by using the AWS SDKs.

Topics

» Tagging models (console)

« Viewing model tags

» Tagging models (SDK)

Tagging models (console)

You can use the Rekognition console to add tags to models, view the tags attached to a model, and
remove tags.

Tagging a model 408

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

Rekognition Custom Labels Guide

Adding or removing tags

This procedure explains how to add tags to, or remove tags from, an existing model. You can
also add tags to a new model when it is trained. For more information, see Training an Amazon

Rekognition Custom Labels model.

To add tags to, or remove tags from, an existing model using the console

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

Choose Get started.

In the navigation pane, choose Projects.

P WD

On the Projects resources page, choose the project that contains the model that you want to
tag.

In the navigation pane, under the project you previously chose, choose Models.
In the Models section, choose the model that you want to add a tag to.
On the model's details page, choose the Tags tab.

In the Tags section, choose Manage tags.

© o N o wu

On the Manage tags page, choose Add new tag.

10. Enter a key and a value.

a. For Key, enter a name for the key.
b. For Value, enter a value.
11. To add more tags, repeat steps 9 and 10.

12. (Optional) To remove a tag, choose Remove next to the tag that you want to remove. If you
are removing a previously saved tag, it is removed when you save your changes.

13. Choose Save changes to save your changes.
Viewing model tags

You can use the Amazon Rekognition console to view the tags attached to a model.

To view the tags attached to all models within a project, you must use the AWS SDK. For more
information, see Listing model tags.

Tagging a model 409

https://console.aws.amazon.com/rekognition/

Rekognition Custom Labels Guide

To view the tags attached to a model

1. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

2. Choose Get started.
3. In the navigation pane, choose Projects.
4

On the Projects resources page, choose the project that contains the model whose tag you
want to view.

o

In the navigation pane, under the project you previously chose, choose Models.
6. Inthe Models section, choose the model whose tag you want to view.

7. On the model's details page, choose the Tags tab. The tags are shown in Tags section.

Tagging models (SDK)

You can use the AWS SDK to:

Add tags to a new model

Add tags to an existing model

List the tags attached to a model

Remove tags from a model

The tags in the following AWS CLI examples are in the following format.

--tags '{"keyl":"valuel",6 "key2":"value2"}'

Alternatively, you can use this format.

--tags keyl=valuel,key2=value2

If you haven't installed the AWS CLI, see Step 4: Set up the AWS CLI and AWS SDKs.

Adding tags to a new model

You can add tags to a model when you create it using the CreateProjectVersion operation. Specify

one or more tags in the Tags array input parameter.

Tagging a model 410

https://console.aws.amazon.com/rekognition/
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion.html

Rekognition Custom Labels Guide

aws rekognition create-project-version --project-arn project arn \
--version-name version_name \
--output-config '{ "S3Location": { "Bucket": "output bucket", "Prefix": ‘"output
folder" } }' \
--tags '{"keyl":"valuel",6"key2":"value2"}' \
--profile custom-labels-access

For information about creating and training a model, see Training a model (SDK).

Adding tags to an existing model

To add one or more tags to an existing model, use the TagResource operation. Specify the model's
Amazon Resource Name (ARN) (ResourceArn) and the tags (Tags) that you want to add. The
following example shows how to add two tags.

aws rekognition tag-resource --resource-arn resource-arn \
--tags '{"keyl":"valuel",6 "key2":"value2"}' \
--profile custom-labels-access

You can get the ARN for a model by calling CreateProjectVersion.

Listing model tags

To list the tags attached to a model, use the ListTagsForResource operation and specify the ARN of
the model (ResourceArn). The response is a map of tag keys and values that are attached to the

specified model.

aws rekognition list-tags-for-resource --resource-arn resource-arn \
--profile custom-labels-access

The output displays a list of the tags attached to the model.

{
"Tags": {
"Dept": "Engineering",
"Name": "Ana Silva Carolina",
"Role": "Developer"
}
}

Tagging a model 411

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_TagResource
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListTagsForResource

Rekognition Custom Labels Guide

To see which models in a project have a specific tag, call DescribeProjectVersions to

get a list of models. Then call ListTagsForResource for each model in the response from
DescribeProjectVersions. Inspect the response from ListTagsForResource to see if the
required tag is present.

The following Python 3 example shows you how search all your projects for a specific tag key and
value. The output includes the project ARN and the model ARN where a matching key is found.

To search for a tag value

1. Save the following code to a file named find_tag. py.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Shows how to find a tag value that's associated with models within
your Amazon Rekognition Custom Labels projects.

import logging

import argparse

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name_)

def find_tag_in_projects(rekognition_client, key, value):
Finds Amazon Rekognition Custom Label models tagged with the supplied key and
key value.
:param rekognition_client: An Amazon Rekognition boto3 client.
:param key: The tag key to find.
:param value: The value of the tag that you want to find.
return: A list of matching model versions (and model projects) that were found.

try:

found_tags = []
found = False

Tagging a model 412

Rekognition Custom Labels Guide

projects = rekognition_client.describe_projects()

Iterate through each project and models within a project.

for project in projects["ProjectDescriptions"]:
logger.info("Searching project: %s ...", project["ProjectArn"])

models = rekognition_client.describe_project_versions(
ProjectArn=(project["ProjectArn"])

for model in models["ProjectVersionDescriptions"]:
logger.info("Searching model %s", model["ProjectVersionArn"])

tags = rekognition_client.list_tags_for_resource(
ResourceArn=model["ProjectVersionArn"]

logger.info(
"\tSearching model: %s for tag: %s value: %s.",
model["ProjectVersionArn"],
key,
value,
)
Check if tag exists.

if key in tags["Tags"]:
if tags["Tags"][key] == value:
found = True
logger.info(
"\t\tMATCH: Project: %s: model version %s",
project["ProjectArn"],
model["ProjectVersionArn"],

)
found_tags.append(
{
"Project": project["ProjectArn"],
"ModelVersion": model["ProjectVersionArn"],
}
)

if found is False:
logger.info("No match for Tag %s with value %s.", key, value)
return found_tags
except ClientError as err:
logger.info("Problem finding tags: %s. ", format(err))

Tagging a model 413

Rekognition Custom Labels Guide

raise

def main():

Entry point for example.
logging.basicConfig(level=logging.INFO,
format="%(levelname)s: %(message)s")

Set up command line arguments.
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)

parser.add_argument('"tag", help="The tag that you want to find.")
parser.add_argument("value", help="The tag value that you want to find.")

args = parser.parse_args()
key = args.tag
value = args.value

print(f"Searching your models for tag: {key} with value: {value}.")

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

Get tagged models for all projects.
tagged_models = find_tag_in_projects(rekognition_client, key, value)

print("Matched models\n-------------- ")
if len(tagged_models) > 0:
for model in tagged_models:
print(
"Project: {project}\nModel version: {version}\n".format(
project=model["Project"], version=model["ModelVersion"]

else:
print("No matches found.")

print("Done.")

Tagging a model 414

Rekognition Custom Labels Guide

if __name__ == "__main__":
main()

2. At the command prompt, enter the following. Replace key and value with the key name and
the key value that you want to find.

python find_tag.py key value

Deleting tags from a model

To remove one or more tags from a model, use the UntagResource operation. Specify the ARN of

the model (ResourceArn) and the tag keys (Tag-Keys) that you want to remove.

aws rekognition untag-resource --resource-arn resource-arn \
--tag-keys '["keyl",b "key2"]1' \
--profile custom-labels-access

Alternatively, you can specify tag-keys in this format.

--tag-keys keyl,key2

Describing a model (SDK)

You can use the DescribeProjectVersions API to get information about a version of a model.
If you don't specify VersionName, DescribeProjectVersions returns descriptions for all
model versions in the project.

To describe a model (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following example code to describe a version of a model.
AWS CLI

Change the value of project-arn to the ARN of the project that you want to describe.
Change the value of version-name to the version of the model that you want to describe.

aws rekognition describe-project-versions --project-arn project_arn \

Describing a model (SDK) 415

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_UntagResource

Rekognition Custom Labels Guide

--version-names version_name \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

« project_arn — the ARN of the model that you want to describe.

« model_version — the version of the model that you want to describe.

For example: python describe_model.py project_arn model_version

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Shows how to describe an Amazon Rekognition Custom Labels model.
import argparse

import logging

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def describe_model(rek_client, project_arn, version_name):
Describes an Amazon Rekognition Custom Labels model.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_arn: The ARN of the prject that contains the model.
:param version_name: The version name of the model that you want to
describe.

try:
Describe the model
logger.info("Describing model: %s for project %s",
version_name, project_arn)

Describing a model (SDK) 416

Rekognition Custom Labels Guide

describe_response =
rek_client.describe_project_versions(ProjectArn=project_arn,

VersionNames=[version_name])
for model in describe_response['ProjectVersionDescriptions']:
print(f"Created: {str(model['CreationTimestamp'])} ")
print(f"ARN: {str(model['ProjectVersionArn'])} ")
if 'BillableTrainingTimeInSeconds' in model:
print(
f"Billing training time (minutes):
{str(model['BillableTrainingTimeInSeconds']/60)} ")
print("Evaluation results: ")
if 'EvaluationResult' in model:
evaluation_results = model['EvaluationResult']
print(f"\tF1l score: {str(evaluation_results['F1Score'])}")
print(
f"\tSummary location: s3://{evaluation_results['Summary']
['S30bject']['Bucket']}/{evaluation_results['Summary']['S30bject']['Name']}")

if 'ManifestSummary' in model:
print(
f"Manifest summary location: s3://{model['ManifestSummary']
['S30bject']['Bucket']}/{model['ManifestSummary']['S30bject']['Name']}")
if 'OutputConfig' in model:
print(
f"Training output location: s3://{model['OutputConfig']
['S3Bucket']}/{model['OutputConfig']['S3KeyPrefix']1}")
if 'MinInferenceUnits' in model:
print(
f"Minimum inference units:
{str(model['MinInferenceUnits'])}")
if 'MaxInferenceUnits' in model:
print(
f"Maximum Inference units:
{str(model['MaxInferenceUnits'])}")

print("Status: " + model['Status'])
print('"Message: " + model['StatusMessage'])

except ClientError as err:
logger.exception(
"Couldn't describe model: %s", err.response['Error']['Message'])
raise

Describing a model (SDK) 417

Rekognition Custom Labels Guide

def add_arguments(parser):

Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(

"project_arn", help="The ARN of the project in which the model resides."
)

parser.add_argument(

"version_name", help="The version of the model that you want to
describe."

)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)
args = parser.parse_args()

print(
f'"Describing model: {args.version_name} for project
{args.project_arn}.")

Describe the model.
session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

describe_model(rekognition_client, args.project_azrn,
args.version_name)

print(
f"Finished describing model: {args.version_name} for project

{args.project_arn}.")

except ClientError as err:

Describing a model (SDK) 418

Rekognition Custom Labels Guide

error_message = f"Problem describing model: {err}"
logger.exception(error_message)
print(error_message)

except Exception as err:
error_message = f"Problem describing model: {err}"
logger.exception(error_message)
print(error_message)

if __name__ == "__main__":
main()

Java V2

Use the following code. Supply the following command line parameters:

» project_arn — the ARN of the model that you want to describe.

« model_version — the version of the model that you want to describe.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsRequest;

import
software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsResponse;
import software.amazon.awssdk.services.rekognition.model.EvaluationResult;

import software.amazon.awssdk.services.rekognition.model.GroundTruthManifest;
import software.amazon.awssdk.services.rekognition.model.OQutputConfig;

import
software.amazon.awssdk.services.rekognition.model.ProjectVersionDescription;
import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import java.util.logging.lLevel;
import java.util.logging.lLogger;

Describing a model (SDK) 419

Rekognition Custom Labels Guide

public class DescribeModel {

public static final Logger logger =
Logger.getlLogger(DescribeModel.class.getName());

public static void describeMyModel(RekognitionClient rekClient, String
projectArn, String versionName) {

try {
// If a single version name is supplied, build request argument

DescribeProjectVersionsRequest describeProjectVersionsRequest =
null;

if (versionName == null) {
describeProjectVersionsRequest =
DescribeProjectVersionsRequest.builder().projectArn(projectArn)
.build();
} else {
describeProjectVersionsRequest =
DescribeProjectVersionsRequest.builder().projectArn(projectArn)
.versionNames(versionName).build();

DescribeProjectVersionsResponse describeProjectVersionsResponse =
rekClient
.describeProjectVersions(describeProjectVersionsRequest);

for (ProjectVersionDescription projectVersionDescription :
describeProjectVersionsResponse
.projectVersionDescriptions()) {

System.out.println("ARN: " +
projectVersionDescription.projectVersionArn());

System.out.println("Status: " +
projectVersionDescription.statusAsString());

System.out.println("Message: " +
projectVersionDescription.statusMessage());

if (projectVersionDescription.billableTrainingTimeInSeconds() !=
null) {
System.out.println(

Describing a model (SDK) 420

Rekognition Custom Labels Guide

"Billable minutes: " +
(projectVersionDescription.billableTrainingTimeInSeconds() / 60));

}

if (projectVersionDescription.evaluationResult() != null) {
EvaluationResult evaluationResult =
projectVersionDescription.evaluationResult();

System.out.println("F1 Score: " +
evaluationResult.f1Score());
System.out.println("Summary location: s3://" +
evaluationResult.summary().s30bject().bucket() + "/"
+ evaluationResult.summary().s30bject().name());

if (projectVersionDescription.manifestSummary() != null) {
GroundTruthManifest manifestSummary =
projectVersionDescription.manifestSummary();
System.out.println("Manifest summary location: s3://" +
manifestSummary.s30bject().bucket() + "/"
+ manifestSummary.s30bject().name());

if (projectVersionDescription.outputConfig() != null) {
OutputConfig outputConfig =
projectVersionDescription.outputConfig();
System.out.println(
"Training output: s3://" + outputConfig.s3Bucket() +
"/" + outputConfig.s3KeyPrefix());
}

if (projectVersionDescription.minInferenceUnits() != null) {
System.out.println("Min inference units: " +
projectVersionDescription.minInferenceUnits());

}

System.out.println();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());

Describing a model (SDK) 421

Rekognition Custom Labels Guide

throw rekError;

public static void main(String args[]) {

String projectArn = null;
String versionName = null;

final String USAGE = "\n" + "Usage: " + "<project_arn> <version_name>\n
\n" + "Where:\n"

+ " project_arn - The ARN of the project that contains the
models you want to describe.\n\n"

+ " version_name - (optional) The version name of the model
that you want to describe. \n\n"

+ " If you don't specify a value, all model
versions are described.\n\n";

if (args.length > 2 || args.length == 0) {
System.out.println(USAGE);
System.exit(1l);

projectArn = args[0];

if (args.length == 2) {
versionName = args[1];

try {

// Get the Rekognition client.

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Describe the model
describeMyModel(rekClient, projectArn, versionName);

rekClient.close();

Describing a model (SDK) 422

Rekognition Custom Labels Guide

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1l);
}

Copying an Amazon Rekognition Custom Labels model (SDK)

You can use the CopyProjectVersion operation to copy an Amazon Rekognition Custom Labels

model version from a source Amazon Rekognition Custom Labels project to a destination project.
The destination project can be in a different AWS account, or in the same AWS account. A typical
scenario is copying a tested model from a development AWS account to a production AWS account.

Alternatively, you can train the model in the destination account with the source dataset. Using the
CopyProjectVersion operation has the following advantages.

« Model behavior is consistent. Model training is non-deterministic and two models trained
with same dataset aren't guaranteed to make the same predictions. Copying the model with
CopyProjectVersion helps make sure that the behavior of the copied model is consistent with
the source model and you won't need to re-test the model.

« Model training isn't required. This saves you money as you are charged for each successful
training of a model.

To copy a model to a different AWS account, you must have an Amazon Rekognition Custom Labels
project in the destination AWS account. For information about creating a project, see Creating a
project. Be sure to create the project in the destination AWS account.

A project policy is a resource-based policy that sets copy permissions for the model version that

you want to copy. You will need to use a project policy when the destination project is in a different

AWS account from the source project.

You do not need to use a project policy, when copying model versions within the same account.

However, you can choose to use a project policy on inter-account projects if you would like more

control over these resources.

Copying a model (SDK) 423

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CopyProjectVersion

Rekognition Custom Labels Guide

You attach the project policy to the source project by calling the PutProjectPolicy operation.

You can't use CopyProjectVersion to copy a model to a project in a different AWS Region. Also,
you can't copy a model with the Amazon Rekognition Custom Labels console. In these cases, you
can train the model in the destination project with the datasets used to train the source model. For
more information, see Training an Amazon Rekognition Custom Labels model.

To copy a model from a source project to a destination project, do the following:
To copy a model

1. Create a project policy document.

2. Attach the project policy to the source project.

3. Copy the model with the CopyProjectVersion operation.

To remove a project policy from a project, call DeleteProjectPolicy. To get a list of project policies

attached to a project, call ListProjectPolicies.

Topics

Creating a project policy document

Attaching a project policy (SDK)

Copying a model (SDK)

Listing project policies (SDK)

Deleting a project policy (SDK)

Creating a project policy document

Rekognition Custom Labels uses a resource-based policy, known as project policy, to manage copy
permissions for a model version. A project policy is a JSON format document.

A project policy allows or denies a principal permission to copy a model version from a source
project to a destination project. You need a project policy if the destination project is in a different
AWS account. That's also true if the destination project is in the same AWS account as the source
project and you want to restrict access to specific model versions. For example, you might want to
deny copy permissions to a specific IAM role within an AWS account.

Copying a model (SDK) 424

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_PutProjectPolicy
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProjectPolicy
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListProjectPolicies
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html#intro-structure-principal

Rekognition Custom Labels Guide

The following example allows the principal arn:aws:iam::111111111111:role/Admin to
copy the model version arn:aws:rekognition:us-east-1:123456789012:project/
my_project/version/test_1/1627045542080.

{
"Version":"2012-10-17",

"Statement": [

{
"Effect":"Allow",
"Principal":{
"AWS":"arn:aws:iam::111111111111:ro0le/Admin"
iy

"Action":"rekognition:CopyProjectVersion",
"Resource":"arn:aws:rekognition:us-east-1:111111111111:project/my_project/
version/test_1/1627045542080"
}
]
}

® Note

Action, Resource, Principal, and Effect are required fields in a project policy
document.

The only supported actionis rekognition:CopyProjectVersion.

NotAction, NotResource, and NotPrincipal are prohibited fields and must not be
present in the project policy document.

If you don't specify a project policy, a principal in the same AWS account as the source
project can still copy a model, if the principal has an Identity-based policy, such as
AmazonRekognitionCustomLabelsFullAccess, that gives permission to call
CopyProjectVersion.

The following procedure creates a project policy document file that you can use with the Python
example in Attaching a project policy (SDK). If you are using the put-project-policy AWS CLI
command, you supply the project policy as a JSON string.

To create a project policy document

1. In a text editor, create the following document. Change the following values:

Copying a model (SDK) 425

Rekognition Custom Labels Guide

» Effect — Specify ALLOW to grant copy permission. Specify DENY to deny copy permission.

 Principal - To the principal that you want to allow or deny access to the model versions
that you specify in Resource. For example you can specify the AWS account principal
for a different AWS account. We don't restrict the principals that you can use. For more
information, see Specifying a principal.

» Resource — The Amazon Resource Name (ARN) of the model version for
which you want to specify copy permissions. If you want to grant permissions
to all model versions within the source project, use the following format
arn:aws:rekognition:region:account:project/source project/version/*

{
"Version":"2012-10-17",
"Statement": [
{
"Effect":"ALLOW or DENY",
"Principal":{
"AWS" :"principal"
1,
"Action":"rekognition:CopyProjectVersion",
"Resource":"Model version ARN"
}
]
}

2. Save the project policy to your computer.

3. Attach the project policy to the source project by following the instructions at Attaching a
project policy (SDK).

Attaching a project policy (SDK)

You attach a project policy to an Amazon Rekognition Custom Labels project by calling the
PutProjectpolicy operation.

Attach multiple project policies to a project by calling PutProjectPolicy for each project policy
that you want to add. You can attach up to five project project policies to a project. If you need to
attach more project policies, you can request a limit increase.

Copying a model (SDK) 426

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-accounts
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#Principal_specifying
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_PutProjectPolicy

Rekognition Custom Labels Guide

When you first attach a unique project policy to a project, don't specify a revision ID in the
PolicyRevisionId input parameter. The response from PutProjectPolicy is a revision ID for
the project policy that Amazon Rekognition Custom Labels creates for you. You can use the revision
ID to update or delete the latest revision of a project policy. Amazon Rekognition Custom Labels
only keeps the latest revision of a project policy. If you try to update or delete a previous revision
of a project policy, you get an InvalidPolicyRevisionIdException error.

To update an existing project policy, specify the revision ID of the project policy in the
PolicyRevisionId input parameter. You can get the revision IDs for project policies in a project
by calling ListProjectPolicies.

After you attach a project policy to a source project, you can copy the model from the source
project to the destination project. For more information, see Copying a model (SDK).

To remove a project policy from a project, call DeleteProjectPolicy. To get a list of project policies

attached to a project, call ListProjectPolicies.

To attach a project policy to a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Create a project policy document.

3. Use the following code to attach the project policy to the project, in the trusting AWS
account, that contains the model version that you want to copy. To get the project ARN, call
DescribeProjects. To get the model version ARN call DescribeProjectVersions.

AWS CLI

Change the following values:

« project-arn to the ARN of the source project in the trusting AWS account that contains
the model version that you want to copy.

e policy-name to a policy name that you choose.

« principal To the principal that you want to allow or deny access to the model versions
that you specify in Model version ARN.

« project-version-arn to the ARN of the model version that you want to copy.

Copying a model (SDK) 427

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListProjectPolicies
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProjectPolicy
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListProjectPolicies
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-describing-project-sdk.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-describing-model-sdk.html

Rekognition Custom Labels Guide

If you want to update an existing project policy, specify the policy-revision-id
parameter and supply the revision ID of the desired project policy.

aws rekognition put-project-policy \
--project-arn project-arn \
--policy-name policy-name \
--policy-document '{ "Version":"2012-10-17", "Statement":
[{ "Effect":"ALLOW or DENY", "Principal":{ "AWS":"principal" },

"Action":"rekognition:CopyProjectVersion", "Resource":"project-version-

arn" }1}' \

--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

« project_arn-The ARN of the source project that you want to attach the project policy
to.

« policy_name - A policy name that you choose.
« project_policy - The file that contains the project policy document,.

e policy_revision_id - (Optional). If you want to update an existing revision of a
project policy, specify the revision ID of the project policy.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Amazon Rekognition Custom Labels model example used in the service
documentation:
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-copy-model-
sdk.html

Shows how to attach a project policy to an Amazon Rekognition Custom Labels
project.

import boto3
import argparse

Copying a model (SDK) 428

Rekognition Custom Labels Guide

import logging
import json
from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def put_project_policy(rek_client, project_arn, policy_name,
policy_document_file, policy_revision_id=None):
Attaches a project policy to an Amazon Rekognition Custom Labels project.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param policy_name: A name for the project policy.
:param project_arn: The Amazon Resource Name (ARN) of the source project
that you want to attach the project policy to.
:param policy_document_file: The JSON project policy document to
attach to the source project.
:param policy_revision_id: (Optional) The revision of an existing policy to
update.
Pass None to attach new policy.
:return The revision ID for the project policy.

try:

policy_document_json = ""
response = None

with open(policy_document_file, 'r') as policy_document:
policy_document_json = json.dumps(json.load(policy_document))

logger.info(
"Attaching %s project_policy to project %s.",
policy_name, project_arn)

if policy_revision_id is None:
response = rek_client.put_project_policy(ProjectArn=project_arn,
PolicyName=policy_name,

PolicyDocument=policy_document_json)
else:

response = rek_client.put_project_policy(ProjectArn=project_arn,
PolicyName=policy_name,

Copying a model (SDK) 429

Rekognition Custom Labels Guide

PolicyDocument=policy_document_json,
PolicyRevisionId=policy_revision_id)
new_revision_id = response['PolicyRevisionId']

logger.info(
"Finished creating project policy %s. Revision ID: %s"

’

policy_name, new_revision_id)
return new_revision_id

except ClientError as err:
logger.exception(
"Couldn't attach %s project policy to project %s: %s }",
policy_name, project_arn, err.response['Error']['Message'])
raise

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The Amazon Resource Name (ARN) of the project "
"that you want to attach the project policy to."

)

parser.add_argument(
"policy_name", help="A name for the project policy."

parser.add_argument(
"project_policy", help="The file containing the project policy JSON"

parser.add_argument(
"--policy_revision_id", help="The revision of an existing policy to
update. "
"If you don't supply a value, a new project policy is created.",
required=False

Copying a model (SDK) 430

Rekognition Custom Labels Guide

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

get command line arguments
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()
print(f"Attaching policy to {args.project_arn}")

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

Attach a new policy or update an existing policy.

response = put_project_policy(rekognition_client,
args.project_arn,
args.policy_name,
args.project_policy,
args.policy_revision_id)

print(
f"project policy {args.policy_name} attached to project
{args.project_arn}")
print(f"Revision ID: {response}")

except ClientError as err:

print("Problem attaching project policy: %s", err)

if __name__ == "__main__":
main()

Copying a model (SDK) 431

Rekognition Custom Labels Guide

Java V2

Use the following code. Supply the following command line parameters:

« project_arn - The ARN of the source project that you want to attach the project policy
to.

e project_policy_name - A policy name that you choose.
« project_policy_document - The file that contains the project policy document.

e project_policy_revision_id - (Optional). If you want to update an existing revision
of a project policy, specify the revision ID of the project policy.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.example.rekognition;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.logging.Level;
import java.util.logging.Logger;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import
software.amazon.awssdk.services.rekognition.model.PutProjectPolicyRequest;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

public class PutProjectPolicy {

public static final Logger logger =
Logger.getLogger(PutProjectPolicy.class.getName());

public static void putMyProjectPolicy(RekognitionClient rekClient, String
projectArn, String projectPolicyName,
String projectPolicyFileName, String projectPolicyRevisionId)
throws IOException {

Copying a model (SDK) 432

Rekognition Custom Labels Guide

try {

Path filePath = Path.of(projectPolicyFileName);

String policyDocument = Files.readString(filePath);

String[] logArguments
projectPolicyName };

new String[] { projectPolicyFileName,

PutProjectPolicyRequest putProjectPolicyRequest = null;

logger.log(Level.INFO, "Attaching Project policy: {0} to project:
{1}", logArguments);

// Attach the project policy.
if (projectPolicyRevisionId == null) {

putProjectPolicyRequest =
PutProjectPolicyRequest.builder().projectArn(projectArn)

.policyName(projectPolicyName).policyDocument(policyDocument).build();
} else {
putProjectPolicyRequest =
PutProjectPolicyRequest.builder().projectArn(projectArn)

.policyName(projectPolicyName).policyRevisionId(projectPolicyRevisionId)
.policyDocument(policyDocument)

.build();

rekClient.putProjectPolicy(putProjectPolicyRequest);

logger.log(Level.INFO, "Attached Project policy: {0} to project:
{1}", logArguments);

} catch (
RekognitionException e) {

logger.log(Level .SEVERE, "Client error occurred: {0}",
e.getMessage());

Copying a model (SDK) 433

Custom Labels Guide

throw e;

public static void main(String args[]) {

final String USAGE = "\n" + "Usage: "
+ "<project_arn> <project_policy_name> <policy_document>
<project_policy_revision_id>\n\n" + "Where:\n"

+ " project_arn - The ARN of the project that you want to
attach the project policy to.\n\n"

+ " project_policy_name - A name for the project policy.\n\n"

+ " project_policy_document - The file name of the project
policy.\n\n"

+ " project_policy_revision_id - (Optional) The revision ID of

the project policy that you want to update.\n\n";

if (args.length < 3 || args.length > 4) {
System.out.println(USAGE);
System.exit(1);

String projectArn = args[0];

String projectPolicyName = args[1];
String projectPolicyDocument = args[2];
String projectPolicyRevisionId = null;

if (args.length == 4) {
projectPolicyRevisionId = args[3];

try {

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Attach the project policy.
putMyProjectPolicy(rekClient, projectArn, projectPolicyName,
projectPolicyDocument,

Copying a model (SDK) 434

Rekognition Custom Labels Guide

projectPolicyRevisionId);

System.out.println(
String.format("project policy %s: attached to project: %s",
projectPolicyName, projectArn));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1l);

catch (IOException intError) {
logger.log(Level .SEVERE, "Exception while reading policy document:
{0}", intError.getMessage());
System.exit(1l);

4. Copy the model version by following the instructions at Copying a model (SDK).

Copying a model (SDK)

You can use the CopyProjectVersion API to copy a model version from a source project to a
destination project. The destination project can be in a different AWS account but must be the
same AWS Region. If the destination project is in a different AWS account (or if you want to grant
specific permissions for a model version copied within an AWS account), you must attach a project
policy to the source project. For more information, see Creating a project policy document. The

CopyProjectVersion API requires access to your Amazon S3 bucket.

The copied model includes the training results for the source model, but doesn't include the source
datasets.

The source AWS account has no ownership over the model copied into a destination account,
unless you set up appropriate permissions.

Copying a model (SDK) 435

Rekognition

Custom Labels Guide

To copy a model (SDK)

1.

If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

Attach a project policy to the source project by following the instructions at Attaching a
project policy (SDK).

If you are copying the model to a different AWS account, make sure that you have a project in
the destination AWS account.

Use the following code to copy the model version to a destination project.

AWS CLI

Change the following values:

source-project-arn to the ARN of the source project that contains the model version
that you want to copy.

source-project-version-arn to the ARN of the model version that that you want to
copy.

destination-project-arn to the ARN of the destination project that you want to
copy the model to.

version-name to a version name for the model in the destination project.

bucket to the S3 bucket that you want the training results for the source model copied
to.

folder to the folder in bucket that you want the training results for the source model
copied to.

(Optional) kms-key-id to the AWS Key Management Service key ID for the model.
(Optional) key to a tag key of your choosing.

(Optional) value to a tag value of your choosing.

aws rekognition copy-project-version \
--source-project-arn source-project-arn \
--source-project-version-arn source-project-version-arn \
--destination-project-arn destination-project-arn \
--version-name version-name \
--output-config '{"S3Bucket":"bucket","S3KeyPrefix":"folder"}"' \
--kms-key-id arn:myKey \

Copying a model (SDK) 436

Rekognition Custom Labels Guide

__tags l{nkeyn:nkeyn}l \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

« source_project_arn— the ARN of the source project in the source AWS account that
contains the model version that you want to copy.

« source_project_version-arn — the ARN of the model version in the source AWS
account that that you want to copy.

« destination_project_arn — the ARN of the destination project that you want to
copy the model to.

« destination_version_name — a version name for the model in the destination
project.

e training_results — the S3 location that you want the training results for the source
model version copied to.

o (Optional) kms_key_id to the AWS Key Management Service key ID for the model.
» (Optional) tag_name to a tag key of your choosing.

» (Optional) tag_value to a tag value of your choosing.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

import argparse

import logging

import time

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name_)

def copy_model(
rekognition_client, source_project_arn, source_project_version_azrn,
destination_project_arn, training_results, destination_version_name):

Copies a version of a Amazon Rekognition Custom Labels model.

Copying a model (SDK) 437

Rekognition

Custom Labels Guide

:param rekognition_client: A Boto3 Amazon Rekognition Custom Labels client.
:param source_project_arn: The ARN of the source project that contains the

model that you want to copy.

:param source_project_version_arn: The ARN of the model version that you

want

to copy.
:param destination_project_Arn: The ARN of the project that you want to copy
the model

to.

:param training_results: The Amazon S3 location where training results for

the model
should be stored.
return: The model status and version.

try:

source_

logger.info("Copying model...%s from %s to %s ",
project_version_arn,
source_project_arn,
destination_project_arn)

output_bucket, output_folder = training_results.replace(
"53://", "").Split("/", 1)
output_config = {"S3Bucket": output_bucket,
"S3KeyPrefix": output_folder}

response = rekognition_client.copy_project_version(
DestinationProjectArn=destination_project_arn,
OutputConfig=output_config,
SourceProjectArn=source_project_azrn,
SourceProjectVersionArn=source_project_version_arn,
VersionName=destination_version_name

destination_model_arn = response["ProjectVersionArn"]

logger.info("Destination model ARN: %s", destination_model_arn)
Wait until training completes.
finished = False
status = "UNKNOWN"
while finished is False:
model_description =

rekognition_client.describe_project_versions(ProjectArn=destination_project_arn,

Copying a model (SDK)

438

Rekognition Custom Labels Guide

VersionNames=[destination_version_name])
status = model_description["ProjectVersionDescriptions"][@]

["Status"]

if status == "COPYING_IN_PROGRESS":
logger.info("Model copying in progress...")
time.sleep(60)
continue

if status == "COPYING_COMPLETED":
logger.info("Model was successfully copied.")

if status == "COPYING_FAILED":

logger.info(
"Model copy failed: %s ",
model_description["ProjectVersionDescriptions"][0]
["StatusMessage"])

finished = True
except ClientError:
logger.exception("Couldn't copy model.")
raise
else:
return destination_model_arn, status

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"source_project_arn",
help="The ARN of the project that contains the model that you want to
copy."
)

parser.add_argument(
"source_project_version_arn",
help="The ARN of the model version that you want to copy."

parser.add_argument(

Copying a model (SDK) 439

Rekognition Custom Labels Guide

"destination_project_arn",
help="The ARN of the project which receives the copied model."

parser.add_argument(
"destination_version_name",
help="The version name for the model in the destination project."

parser.add_argument(
"training_results",
help="The S3 location in the destination account that receives the
training results for the copied model."

)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

get command line arguments

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

print(
f"Copying model version {args.source_project_version_arn} to project
{args.destination_project_arn}")

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

Copy the model.

model_arn, status = copy_model(rekognition_client,
args.source_project_arn,
args.source_project_version_azrn,
args.destination_project_arn,
args.training_results,
args.destination_version_name,

)

Copying a model (SDK) 440

Rekognition Custom Labels Guide

print(f"Finished copying model: {model_arn}")
print(f"Status: {status}")

except ClientError as err:
print(f"Problem copying model: {err}")

if _name__ == "__main__":
main()

Java V2

Use the following code. Supply the following command line parameters:

« source_project_arn— the ARN of the source project in the source AWS account that
contains the model version that you want to copy.

« source_project_version-arn — the ARN of the model version in the source AWS
account that that you want to copy.

« destination_project_arn — the ARN of the destination project that you want to
copy the model to.

« destination_version_name — a version name for the model in the destination
project.

» output_bucket — the S3 bucket that you want the training results for the source
model version copied to.

o output_folder — the folder in the S3 that you want the training results for the source
model version copied to.

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;

import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import
software.amazon.awssdk.services.rekognition.model.CopyProjectVersionRequest;

Copying a model (SDK) 441

Rekognition

Custom Labels Guide

import

software.amazon.awssdk.services.rekognition.model.CopyProjectVersionResponse;

import

software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsRequest;

import

software.amazon.awssdk.services.rekognition.model.DescribeProjectVersionsResponse;

import software.amazon.awssdk.services.rekognition.model.OutputConfig;
import

software.amazon.awssdk.services.rekognition.model.ProjectVersionDescription;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

import java.util.logging.Level;
import java.util.logging.Logger;

public class CopyModel {

public static final Logger logger =
Logger.getlLogger(CopyModel.class.getName());

public static ProjectVersionDescription copyMyModel(RekognitionClient
rekClient,
String sourceProjectArn,
String sourceProjectVersionArn,
String destinationProjectArn,
String versionName,
String outputBucket,
String outputFolder) throws InterruptedException {

try {

OutputConfig outputConfig =
OutputConfig.builder().s3Bucket(outputBucket).s3KeyPrefix(outputFolder).build();

String[] logArguments = new String[] { versionName,
sourceProjectArn, destinationProjectArn };

logger.log(Level.INFO, "Copying model {0} for from project {1} to
project {2}", logArguments);

CopyProjectVersionRequest copyProjectVersionRequest =
CopyProjectVersionRequest.builder()
.sourceProjectArn(sourceProjectArn)
.sourceProjectVersionArn(sourceProjectVersionArn)

Copying a model (SDK) 442

Rekognition

Custom Labels Guide

.versionName(versionName)
.destinationProjectArn(destinationProjectArn)
.outputConfig(outputConfig)

.build();

CopyProjectVersionResponse response =
rekClient.copyProjectVersion(copyProjectVersionRequest);

logger.log(Level.INFO, "Destination model ARN: {0Q}",
response.projectVersionArn());
logger.log(Level.INFO, "Copying model...");

// wait until copying completes.

boolean finished = false;

ProjectVersionDescription copiedModel = null;

while (Boolean.FALSE.equals(finished)) {
DescribeProjectVersionsRequest describeProjectVersionsRequest =
DescribeProjectVersionsRequest.builder()
.versionNames(versionName)
.projectArn(destinationProjectArn)
.build();

DescribeProjectVersionsResponse describeProjectVersionsResponse
= rekClient

.describeProjectVersions(describeProjectVersionsRequest);
for (ProjectVersionDescription projectVersionDescription :
describeProjectVersionsResponse
.projectVersionDescriptions()) {
copiedModel = projectVersionDescription;
switch (projectVersionDescription.status()) {
case COPYING_IN_PROGRESS:
logger.log(Level.INFO, "Copying model...");
Thread.sleep(5000);

continue;

case COPYING_COMPLETED:

Copying a model (SDK)

443

Rekognition Custom Labels Guide

finished = true;
logger.log(Level.INFO, "Copying completed");
break;

case COPYING_FAILED:
finished = true;
logger.log(Level.INFO, "Copying failed...");
break;

default:
finished = true;
logger.log(Level.INFO, "Unexpected copy status %s",
projectVersionDescription.statusAsString());
break;

logger.log(Level.INFO, "Finished copying model {0} for from project
{1} to project {2}", logArguments);

return copiedModel;

} catch (RekognitionException e) {
logger.log(Level .SEVERE, "Could not train model: {@}",
e.getMessage());
throw e;

public static void main(String args[]) {

String sourceProjectArn = null;

String sourceProjectVersionArn = null;
String destinationProjectArn = null;
String versionName = null;

String bucket = null;

String location = null;

final String USAGE = "\n" + "Usage: "

Copying a model (SDK) 444

Rekognition Custom Labels Guide

+ "<source_project_arn> <source_project_version_arn>
<destination_project_arn> <version_name> <output_bucket> <output_folder>\n\n"

+ "Where:\n"

+ " source_project_arn - The ARN of the project that contains
the model that you want to copy. \n\n"

+ " source_project_version_arn - The ARN of the project that
contains the model that you want to copy. \n\n"

+ " destination_project_arn - The ARN of the destination
project that you want to copy the model to. \n\n"

+ " version_name - A version name for the copied model.\n\n"

+ " output_bucket - The S3 bucket in which to place the
training output. \n\n"

+ " output_folder - The folder within the bucket that the

training output is stored in. \n\n";

if (args.length != 6) {
System.out.println(USAGE);
System.exit(1l);

sourceProjectArn = args[0];
sourceProjectVersionArn = args[1l];
destinationProjectArn = args[2];
versionName = args[3];

bucket = args[4];

location = args[5];

try {

// Get the Rekognition client.

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Copy the model.
ProjectVersionDescription copiedModel = copyMyModel(rekClient,
sourceProjectArn,
sourceProjectVersionArn,
destinationProjectArn,
versionName,
bucket,
location);

Copying a model (SDK) 445

Rekognition Custom Labels Guide

System.out.println(String.format("Model copied: %s Status: %s",
copiedModel.projectVersionArn(),
copiedModel.statusMessage()));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1);
} catch (InterruptedException intError) {
logger.log(Level .SEVERE, "Exception while sleeping: {0}",
intError.getMessage());
System.exit(1);

Listing project policies (SDK)

You can use the ListProjectPolicies operation to list the project policies that are attached to an
Amazon Rekognition Custom Labels project.

To list the project policies attached to a project (SDK)

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Use the following code to list the project policies.

AWS CLI

Change project-arn to the Amazon Resource Name of the project for which you want to
list the attached project policies.

aws rekognition list-project-policies \
--project-arn project-arn \
--profile custom-labels-access

Copying a model (SDK) 446

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListProjectPolicies

Rekognition Custom Labels Guide

Python

Use the following code. Supply the following command line parameters:

« project_arn — the Amazon Resource Name of the project for which you want to list the
attached project policies.

For example: python list_project_policies.py project_arn

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Amazon Rekognition Custom Labels model example used in the service
documentation:
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-copy-model-
sdk.html

Shows how to list the project policies in an Amazon Rekogntion Custom Labels
project.

import argparse

import logging

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def display_project_policy(project_policy):
Displays information about a Custom Labels project policy.
:param project_policy: The project policy (ProjectPolicy)
that you want to display information about.
print(f"Policy name: {(project_policy['PolicyName'])}")
print(f"Project Arn: {project_policy['ProjectArn']}")
print(f"Document: {(project_policy['PolicyDocument'])}")
print(f"Revision ID: {(project_policy['PolicyRevisionId'])}")
print()

Copying a model (SDK) 447

Rekognition Custom Labels Guide

def list_project_policies(rek_client, project_azrn):
Describes an Amazon Rekognition Custom Labels project, or all projects.
:param rek_client: The Amazon Rekognition Custom Labels Boto3 client.
:param project_arn: The Amazon Resource Name of the project you want to use.

try:

max_results = 5
pagination_token = ''
finished = False

logger.info("Listing project policies in: %s.", project_arn)
print('Projects\n-------- ")
while not finished:

response = rek_client.list_project_policies(
ProjectArn=project_arn, MaxResults=max_results,
NextToken=pagination_token)

for project in response['ProjectPolicies']:
display_project_policy(project)

if 'NextToken' in response:

pagination_token = response['NextToken']
else:

finished = True

logger.info("Finished listing project policies.")

except ClientError as err:
logger.exception(
"Couldn't list policies for - %s: %s",

project_arn,err.response['Error']['Message'])
raise

def add_arguments(parser):

Adds command line arguments to the parser.

Copying a model (SDK) 448

Rekognition Custom Labels Guide

:param parser: The command line parser.

parser.add_argument(
"project_arn", help="The Amazon Resource Name of the project for which

you want to list project policies."
)

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:
get command line arguments
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)
args = parser.parse_args()
print(f"Listing project policies in: {args.project_arn}")

List the project policies.

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

list_project_policies(rekognition_client,
args.project_arn)

except ClientError as err:
print(f"Problem list project_policies: {err}")

if __name__ == "__main__":
main()

Java V2

Use the following code. Supply the following command line parameters:

« project_arn — The ARN of the project that has the project polices you want to list.

Copying a model (SDK) 449

Rekognition Custom Labels Guide

/*
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/
package com.example.rekognition;

import java.util.logging.Level;

import java.util.logging.lLogger;

import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
import software.amazon.awssdk.regions.Region;

import software.amazon.awssdk.services.rekognition.RekognitionClient;

import
software.amazon.awssdk.services.rekognition.model.ListProjectPoliciesRequest;

import
software.amazon.awssdk.services.rekognition.model.ListProjectPoliciesResponse;

import software.amazon.awssdk.services.rekognition.model.ProjectPolicy;

import software.amazon.awssdk.services.rekognition.model.RekognitionException;

public class ListProjectPolicies {

public static final Logger logger =
Logger.getLogger(ListProjectPolicies.class.getName());

public static void listMyProjectPolicies(RekognitionClient rekClient, String
projectArn) {

try {

logger.log(Level .INFO, "Listing project policies for project: {0}",
projectArn);

// List the project policies.

Boolean finished = false;
String nextToken null;

while (Boolean.FALSE.equals(finished)) {

ListProjectPoliciesRequest listProjectPoliciesRequest =
ListProjectPoliciesRequest.builder()
.maxResults(5)

Copying a model (SDK) 450

Rekognition Custom Labels Guide

.projectArn(projectArn)
.nextToken(nextToken)
.build();

ListProjectPoliciesResponse response =
rekClient.listProjectPolicies(listProjectPoliciesRequest);

for (ProjectPolicy projectPolicy : response.projectPolicies()) {

System.out.println(String.format("Name: %s",
projectPolicy.policyName()));

System.out.println(String.format("Revision ID: %s\n",
projectPolicy.policyRevisionId()));

nextToken = response.nextToken();

if (nextToken == null) {
finished = true;

logger.log(Level.INFO, "Finished listing project policies for
project: {0}", projectArn);

} catch (

RekognitionException e) {
logger.log(Level .SEVERE, "Client error occurred: {@}",
e.getMessage());
throw e;

public static void main(String args[]) {

final String USAGE = "\n" + "Usage: " + "<project_arn> \n\n" + "Where:
\n"
+ " project_arn - The ARN of the project with the project
policies that you want to list.\n\n";

Copying a model (SDK) 451

Rekognition Custom Labels Guide

if (args.length != 1) {
System.out.println(USAGE);
System.exit(1l);

String projectArn = args[0];

try {

RekognitionClient rekClient = RekognitionClient.builder()
.credentialsProvider(ProfileCredentialsProvider.create("custom-

labels-access"))
.region(Region.US_WEST_2)
Lbuild();

// List the project policies.
listMyProjectPolicies(rekClient, projectArn);

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",

rekError.getMessage());
System.exit(1l);

Deleting a project policy (SDK)

You can use the DeleteProjectPolicy operation to delete a revision of an existing project policy from
an Amazon Rekognition Custom Labels project. If you want to delete all revisions of a project policy
that are attached to a project, use ListProjectPolicies to get the revision IDs of each project policy
attached to the project. Then call DeletePolicy for each policy name.

Copying a model (SDK) 452

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProjectPolicy
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListProjectPolicies

Rekognition

Custom Labels Guide

To delete a revision of a project policy (SDK)

1.

If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

Use the following code to delete a project policy.

DeletePolicy takes ProjectARN, PolicyName and PolicyRevisionId. ProjectARN and
PolicyName are required for this API. PolicyRevisionId is optional, but can be included
for the purposes of atomic updates.

AWS CLI

Change the following values:

« policy-name to the name of the project policy that you want to delete.
e policy-revision-id to the revision ID of the project policy that you want to delete.

« project-arn to the Amazon Resource Name of the project that contains the revision of
the project policy that you want to delete.

aws rekognition delete-project-policy \
--policy-name policy-name \
--policy-revision-id policy-revision-id \
--project-arn project-arn \
--profile custom-labels-access

Python

Use the following code. Supply the following command line parameters:

« policy-name - The name of the project policy that you want to delete.

e project-arn - The Amazon Resource Name of the project that contains the project
policy that you want to delete.

« policy-revision-id - The revision ID of the project policy that you want to delete.

For example: python delete_project_policy.py policy _name project_arn
policy revision_id

Copying a model (SDK) 453

Rekognition Custom Labels Guide

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

Amazon Rekognition Custom Labels model example used in the service
documentation:
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-copy-model-
sdk.html

Shows how to delete a revision of a project policy.

import argparse

import logging

import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name_)

def delete_project_policy(rekognition_client, policy_name, project_arn,
policy_revision_id=None):

Deletes a project policy.

:param rekognition_client: A Boto3 Amazon Rekognition client.

:param policy_name: The name of the project policy that you want to delete.

:param policy_revision_id: The revsion ID for the project policy that you
want to delete.

:param project_arn: The Amazon Resource Name of the project that contains
the project policy

that you want to delete.

try:

logger.info("Deleting project policy: %s

, policy_name)

if policy_revision_id is None:
rekognition_client.delete_project_policy(
PolicyName=policy_name,
ProjectArn=project_azrn)

else:
rekognition_client.delete_project_policy(
PolicyName=policy_name,

Copying a model (SDK) 454

Rekognition Custom Labels Guide

PolicyRevisionId=policy_revision_id,
ProjectArn=project_azrn)

logger.info("Deleted project policy: %s", policy_name)
except ClientError:

logger.exception("Couldn't delete project policy.")

raise

def confirm_project_policy_deletion(policy_name):
Confirms deletion of the project policy. Returns True if delete entered.
:param model_arn: The ARN of the model that you want to delete.
print(
f"Are you sure you wany to delete project policy {policy_name} ?\n",
policy_name)

delete = input("Enter delete to delete your project policy: ")
if delete == "delete":

return True
else:

return False

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"policy_name", help="The ARN of the project that contains the project
policy that you want to delete."

)

parser.add_argument(
"project_arn", help="The ARN of the project project policy you want to
delete."
)

parser.add_argument(
"--policy_revision_id", help="(Optional) The revision ID of the project
policy that you want to delete.",

Copying a model (SDK) 455

Rekognition Custom Labels Guide

required=False

def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

if confirm_project_policy_deletion(args.policy_name) is True:
print(f"Deleting project_policy: {args.policy_namel}")

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

Delete the project policy.

delete_project_policy(rekognition_client,
args.policy_name,
args.project_arn,
args.policy_revision_id)

print(f"Finished deleting project policy: {args.policy_namel}")
else:
print(f"Not deleting project policy {args.policy_name}")
except ClientError as err:
print(f"Couldn't delete project policy in {args.policy_name}: {err}")

if __name__ == "__main__":
main()

Java V2

Use the following code. Supply the following command line parameters:

Copying a model (SDK) 456

Rekognition

Custom Labels Guide

e policy-name - The name of the project policy that you want to delete.

« project-arn-The Amazon Resource Name of the project that contains the project
policy that you want to delete.

e policy-revision-id - The revision ID of the project policy that you want to delete.

/*

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

*/

package com.example.rekognition;

import
import

import
import
import
import

java.util.logging.Level;
java.util.logging.Logger;

software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider;
software.amazon.awssdk.regions.Region;
software.amazon.awssdk.services.rekognition.RekognitionClient;

software.amazon.awssdk.services.rekognition.model.DeleteProjectPolicyRequest;

import

public

software.amazon.awssdk.services.rekognition.model.RekognitionException;

class DeleteProjectPolicy {

public static final Logger logger =
Logger.getLogger(DeleteProjectPolicy.class.getName());

public static void deleteMyProjectPolicy(RekognitionClient rekClient, String
projectArn,

String projectPolicyName,
String projectPolicyRevisionId)
throws InterruptedException {

try {
String[] logArguments = new String[] { projectPolicyName,

projectPolicyRevisionId };

logger.log(Level.INFO, "Deleting: Project policy: {0} revision:

{1}", logArguments);

Copying a model (SDK)

457

Rekognition Custom Labels Guide

// Delete the project policy.

DeleteProjectPolicyRequest deleteProjectPolicyRequest =
DeleteProjectPolicyRequest.builder()
.policyName(projectPolicyName)
.policyRevisionId(projectPolicyRevisionId)
.projectArn(projectArn).build();

rekClient.deleteProjectPolicy(deleteProjectPolicyRequest);

logger.log(Level.INFO, "Deleted: Project policy: {0} revision: {1}",
logArguments);
} catch (
RekognitionException e) {
logger.log(Level .SEVERE, "Client error occurred: {0}",
e.getMessage());
throw e;
}
}
public static void main(String args[]) {
final String USAGE = "\n" + "Usage: " + "<project_arn>
<project_policy_name> <project_policy_revision_id>\n\n"
+ "Where:\n"
+ " project_arn - The ARN of the project that has the project
policy that you want to delete.\n\n"
+ " project_policy_name - The name of the project policy that
you want to delete.\n\n"
+ " project_policy_revision_id - The revision of the project
policy that you want to delete.\n\n";
if (args.length != 3) {
System.out.println(USAGE);
System.exit(1l);
}
String projectArn = args[Q];
String projectPolicyName = args[1];
String projectPolicyRevisionId = args[2];
Copying a model (SDK) 458

Rekognition Custom Labels Guide

try {

RekognitionClient rekClient = RekognitionClient.builder()

.credentialsProvider(ProfileCredentialsProvider.create("custom-
labels-access"))

.region(Region.US_WEST_2)

.build();

// Delete the project policy.
deleteMyProjectPolicy(rekClient, projectArn, projectPolicyName,
projectPolicyRevisionId);

System.out.println(String.format("project policy deleted: %s
revision: %s'", projectPolicyName,
projectPolicyRevisionId));

rekClient.close();

} catch (RekognitionException rekError) {
logger.log(Level .SEVERE, "Rekognition client error: {0}",
rekError.getMessage());
System.exit(1l);

catch (InterruptedException intError) {
logger.log(Level .SEVERE, "Exception while sleeping: {0}",
intError.getMessage());
System.exit(1l);

Copying a model (SDK) 459

Rekognition Custom Labels Guide

Custom Labels Examples

This section contains examples that show you how you make use Amazon Rekognition Custom
Labels's capabilities.

Example Description

Improving a model with Model feedback Shows how to improve a model using human

verification to create a new training dataset.

Amazon Rekognition Custom Labels Demonstration of a user interface that

demonstration displays the results of a call to DetectCus
tomLabels

Detecting Custom Labels in videos Shows how you can use DetectCus
tomLabels with frames extracted from a
video.

Analyzing images with an AWS Lambda Shows how you can use DetectCus

function tomLabels with a Lambda function.

Creating a manifest file from a CSV file Shows how to use a CSV file to create a

manifest file suitable for finding objects,
scenes, and concepts associated with an entire
image (classification).

Improving a model with Model feedback

The Model Feedback solution enables you to give feedback on your model's predictions and make
improvements by using human verification. Depending on the use case, you can be successful with
a training dataset that has only a few images. A larger annotated training set might be required to
build a more accurate model. Using the Model Feedback solution, you can create a larger dataset
through model assistance.

To install and configure the Model Feedback solution, see Model Feedback Solution.

The workflow for continuous model improvement is as follows:

Improving a model with Model feedback 460

https://github.com/aws-samples/amazon-rekognition-custom-labels-feedback-solution

Rekognition Custom Labels Guide

1. Train the first version of your model (possibly with a small training dataset).
2. Provide an unannotated dataset for the Model Feedback solution.

3. The Model Feedback solution uses the current model. It starts human verification jobs to
annotate a new dataset.

4. Based on human feedback, the Model Feedback solution generates a manifest file that you use
to create a new model.

Amazon Rekognition Custom Labels demonstration

The Amazon Rekognition Custom Labels Demonstration shows a user interface that analyzes
images from your local computer by using the DetectCustomLabels API.

The application shows you information about the Amazon Rekognition Custom Labels models in
your AWS account. After you select a running model, you can analyze an image from your local
computer. If necessary, you can start a model. You can also stop a running model. The application
shows integration with other AWS Services such as Amazon Cognito, Amazon S3, and Amazon
CloudFront.

For more information, see Amazon Rekognition Custom Labels Demo.

Detecting Custom Labels in videos

The following example shows how you can use DetectCustomLabels with frames extracted from
a video. The code has been tested with video files in mov and mp4 format.

Using DetectCustomLabels with captured frames

1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more
information, see Step 4: Set up the AWS CLI and AWS SDKs.

2. Make sure you have rekognition:DetectCustomLabels and AmazonS3ReadOnlyAccess
permissions. For more information, see Step 4: Set up the AWS CLI and AWS SDKs.

3. Use the following example code. Change the value of videoFile to the name of a video
file. Change the value of projectVersionArn to the Amazon Resource Name (ARN) of your
Amazon Rekognition Custom Labels model.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Amazon Rekognition Custom Labels demonstration 461

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels
https://github.com/aws-samples/amazon-rekognition-custom-labels-demo

Rekognition

Custom Labels Guide

Purpose

Shows how to analyze a local video with an Amazon Rekognition Custom Labels model.

import
import
import
import
import
import

argparse
logging
json
math

cv2
boto3

from botocore.exceptions import ClientError

logger

= logging.getLogger(__name__)

def analyze_video(rek_client, project_version_arn, video_file):

Analyzes a local video file with an Amazon Rekognition Custom Labels model.
Creates a results JSON file based on the name of the supplied video file.
:param rek_client: A Boto3 Amazon Rekognition client.

:param project_version_arn: The ARN of the Custom Labels model that you want to

use.

:param video_file: The video file that you want to analyze.

custom_labels = []

cap = cv2.VideoCapture(video_file)
frame_rate = cap.get(5) # Frame rate.
while cap.isOpened():

frame_id = cap.get(1l) # Current frame number.
print(f"Processing frame id: {frame_id}")
ret, frame = cap.read()
if ret is not True:
break
if frame_id % math.floor(frame_rate) ==
has_frame, image_bytes = cv2.imencode(".jpg", frame)

if has_frame:
response = rek_client.detect_custom_labels(
Image={
'Bytes': image_bytes.tobytes(),
I

Detecting Custom Labels in videos 462

Rekognition Custom Labels Guide
ProjectVersionArn=project_version_azrn
)
for elabel in response["CustomlLabels"]:
elabel["Timestamp"] = (frame_id/frame_rate)*1000
custom_labels.append(elabel)
print(custom_labels)
with open(video_file + ".json", "w", encoding="utf-8") as f:
f.write(json.dumps(custom_labels))
cap.release()
def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.
parser.add_argument(
"project_version_arn", help="The ARN of the model that you want to use."
)
parser.add_argument(
"video_file", help="The local path to the video that you want to analyze."
)
def main():

logging.basicConfig(level=1ogging.INFO,
format="%(levelname)s: %(message)s")

try:
Get command line arguments.
parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)
args = parser.parse_args()

session = boto3.Session(profile_name='custom-labels-access')
rekognition_client = session.client("rekognition")

Detecting Custom Labels in videos 463

Rekognition Custom Labels Guide

analyze_video(rekognition_client,
args.project_version_arn, args.video_file)

except ClientError as err:
print(f"Couldn't analyze video: {err}")

if __name__ == "__main__":
main()

Analyzing images with an AWS Lambda function

AWS Lambda is a compute service that lets you run code without provisioning or managing servers.
For example, you can analyze images submitted from a mobile application without having to create
a server to host the application code. The following instructions show how to create a Lambda
function in Python that calls DetectCustomLabels. The function analyzes a supplied image and

returns a list of labels found in the image. The instructions include example Python code showing
how to call the Lambda function with an image in an Amazon S3 bucket, or an image supplied
from a local computer.

Topics

Step 1: Create an AWS Lambda function (console)

Step 2: (Optional) Create a layer (console)

Step 3: Add Python code (console)

Step 4: Try your Lambda function

Step 1: Create an AWS Lambda function (console)

In this step, you create an empty AWS function and an IAM execution role that lets your function
call the DetectCustomLabels operation. It also grants access to the Amazon S3 bucket that
stores images for analysis. You also specify environment variables for the following:

« The Amazon Rekognition Custom Labels model that you want your Lambda function to use.

« The confidence limit that you want the model to use.

Later you add the source code and optionally a layer to the Lambda function.

Analyzing images with an AWS Lambda function 464

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels

Rekognition Custom Labels Guide

To create an AWS Lambda function (console)

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. Choose Create function. For more information, see Create a Lambda Function with the
Console.

3. Choose the following options.

o Choose Author from scratch.

» Enter a value for Function name.

« For Runtime choose Python 3.10.

Choose Create function to create the AWS Lambda function.
On the function page, Choose the Configuration tab.

On the Environment variables pane, choose Edit.

N o v A

Add the following environment variables. For each variable choose Add enviroment variable
and then enter the variable key and value.

Key Value

MODEL_ARN The Amazon Resource Name (ARN) of the
model that you want your Lambda function
to use. You can get the model ARN from the
Use Model tab of the model's details page
in the Amazon Rekognition Custom Labels
console.

CONFIDENCE The minimum value (0-100) for the model's
confidence in the prediction for a label. The
Lambda function doesn't return labels with
confidence values lower than this value.

8. Choose Save to save the environment variables.

On the Permissions pane, Under Role name, choose the execution role to open the role in the
IAM console.

10. In the Permissions tab, choose Add permissions and then Create inline policy.

11. Choose JSON and replace the existing policy with the following policy.

Step 1: Create an AWS Lambda function (console) 465

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html

Rekognition

Custom Labels Guide

12. Choose Next.

"Version": "2012-10-17",
"Statement": [

"Action": "rekognition:DetectCustomLabels",
"Resource": "*",

"Effect": "Allow",

"Sid": "DetectCustomLabels"

13. In Policy details, enter a name for the policy, such as DetectCustomLabels-access.

14. Choose Create policy.

15. If you are storing images for analysis in an Amazon S3 bucket, repeat steps 10-14.

a.

b.

For step 11, use the following policy. Replace bucket/folder path with the Amazon S3
bucket and folder path to the images that you want to analyze.

"Version": "2012-10-17",
"Statement": [

{

"Sid": "S3Access",

"Effect": "Allow",

"Action": "s3:GetObject",

"Resource": "arn:aws:s3:::bucket/folder path/*"
}

For step 13, choose a different policy name, such as S3Bucket-access.

Step 2: (Optional) Create a layer (console)

To run this example, You don't need to do this step. The DetectCustomLabels operation is
included in the default Lambda Python environment as part of AWS SDK for Python (Boto3). If
other parts of your Lambda function need recent AWS service updates that aren't in the default

Step 2: (Optional) Create a layer (console) 466

Rekognition Custom Labels Guide

Lambda Python environment, do this step to add the latest Boto3 SDK release as a layer to your
function.

First, you create a .zip file archive that contains the Boto3 SDK. You then create a layer and add
the .zip file archive to the layer. For more information, see Using layers with your Lambda function.

To create and add a layer (console)

1. Open a command prompt and enter the following commands.

pip install boto3 --target python/.
zip boto3-layer.zip -r python/

Note the name of the zip file (boto3-layer.zip). You need it in step 6 of this procedure.

Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

In the navigation pane, choose Layers.
Choose Create layer.
Enter values for Name and Description.

Choose Upload a .zip file and choose Upload.

© N o U B W N

In the dialog box, choose the .zip file archive (boto3-layer.zip) that you created in step 1 of this
procedure.

9. For compatible runtimes, choose Python 3.9.
10. Choose Create to create the layer.

11. Choose the navigation pane menu icon.

12. In the navigation pane, choose Functions.

13. In the resources list, choose the function that you created in Step 1: Create an AWS Lambda
function (console).

14. Choose the Code tab.

15. In the Layers section, choose Add a layer.

16. Choose Custom layers.

17. In Custom layers, choose the layer name that you entered in step 6.
18. In Version choose the layer version, which should be 1.

19. Choose Add.

Step 2: (Optional) Create a layer (console) 467

https://docs.aws.amazon.com/lambda/latest/dg/invocation-layers.html#invocation-layers-using
https://console.aws.amazon.com/lambda/

Rekognition Custom Labels Guide

Step 3: Add Python code (console)

In this step, you add Python code to your Lambda function by using the Lambda console code
editor. The code analyzes a supplied image with DetectCustomLabels and returns a list of labels
found in the image. The supplied image can be located in an Amazon S3 bucket or provided as
byte64 encoded image bytes.

To add Python code (console)
1. If you're not in the Lambda console, do the following:

a. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

b. Open the Lambda function you created in Step 1: Create an AWS Lambda function
(console).

2. Choose the Code tab.

3. In Code source, replace the code in lambda_function.py with the following:

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose

An AWS lambda function that analyzes images with an the Amazon Rekognition
Custom Labels model.

import json

import baseb4

from os import environ

import logging

import boto3

from botocore.exceptions import ClientError

Set up logging.
logger = logging.getlLogger(__name_)

Get the model ARN and confidence.
model_arn = environ['MODEL_ARN']
min_confidence = int(environ.get('CONFIDENCE', 50))

Get the boto3 client.

Step 3: Add Python code (console) 468

https://console.aws.amazon.com/lambda/

Rekognition Custom Labels Guide

rek_client = boto3.client('rekognition')

def lambda_handler(event, context):
Lambda handler function
param: event: The event object for the Lambda function.
param: context: The context object for the lambda function.
return: The labels found in the image passed in the event
object.

try:

Determine image source.

if 'image' in event:
Decode the image
image_bytes = event['image'].encode('utf-8"')
img_b64decoded = baseb4.b64decode(image_bytes)
image = {'Bytes': img_b64decoded}

elif 'S30bject' in event:
image = {'S30bject':
{'Bucket': event['S30bject']['Bucket'],
"Name': event['S30bject']['Name']}
}

else:
raise ValueError(
'Invalid source. Only image base 64 encoded image bytes or S30bject
are supported.')

Analyze the image.

response = rek_client.detect_custom_labels(Image=image,
MinConfidence=min_confidence,
ProjectVersionArn=model_azrn)

Get the custom labels
labels = response['CustomLabels"']

lambda_response = {
"statusCode": 200,

Step 3: Add Python code (console) 469

Rekognition Custom Labels Guide

"body": json.dumps(labels)

except ClientError as err:
error_message = f"Couldn't analyze image. " + \
err.response['Error']['Message']

lambda_response = {
'statusCode': 400,
'body': {
"Error": err.response['Error']['Code'],
"ErrorMessage": error_message

}
logger.error("Error function %s: %s",
context.invoked_function_arn, error_message)

except ValueError as val_error:
lambda_response = {
'statusCode': 400,
"body': {
"Error": "ValueError",
"ErrorMessage": format(val_error)

}
logger.error("Error function %s: %s",
context.invoked_function_arn, format(val_error))

return lambda_response

4. Choose Deploy to deploy your Lambda function.

Step 4: Try your Lambda function

In this step you use Python code on your computer to pass a local image, or an image in an
Amazon S3 bucket, to your Lambda function. Images passed from a local computer must be
smaller than 6291456 bytes. If your images are larger, upload the images to an Amazon S3 bucket
and call the script with the Amazon S3 path to the image. For information about uploading image
files to an Amazon S3 bucket, see Uploading objects.

Step 4: Try your Lambda function 470

https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Rekognition Custom Labels Guide

Make sure you run the code in the same AWS Region in which you created the Lambda function.
You can view the AWS Region for your Lambda function in the navigation bar of the function
details page in the Lambda console.

If the AWS Lambda function returns a timeout error, extend the timeout period for the Lambda
function function, For more information, see Configuring function timeout (console).

For more information about invoking a Lambda function from your code, see Invoking AWS
Lambda Functions.

To try your Lambda function

1. Make sure you have lambda: InvokeFunction permission. You can use the following policy.

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "InvokelLambda",
"Effect": "Allow",
"Action": "lambda:InvokeFunction",
"Resource": "ARN for lambda function"
}
]
}

You can get the ARN for your Lambda function function from the function overview in the
Lambda console.

To provide access, add permissions to your users, groups, or roles:

« Users and groups in AWS IAM ldentity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

« Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

e |AM users:

Step 4: Try your Lambda function 471

https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-timeout-console
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-functions.html
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-functions.html
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

Rekognition Custom Labels Guide

» Create a role that your user can assume. Follow the instructions in Create a role for an IAM
user in the IAM User Guide.

o (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow
the instructions in Adding permissions to a user (console) in the IAM User Guide.

2. Install and configure AWS SDK for Python. For more information, see Step 4: Set up the AWS
CLI and AWS SDKs.

3. Start the model that you specified in step 7 of Step 1: Create an AWS Lambda function
(console) .

4. Save the following code to a file named client. py.

Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: Apache-2.0

Purpose
Test code for running the Amazon Rekognition Custom Labels Lambda
function example code.

import argparse
import logging
import baseb4
import json
import boto3

from botocore.exceptions import ClientError

logger = logging.getlLogger(__name__)

def analyze_image(function_name, image):
"""Analyzes an image with an AWS Lambda function.
:param image: The image that you want to analyze.
:return The status and classification result for
the image analysis.

lambda_client = boto3.client('lambda"')

lambda_payload = {}

Step 4: Try your Lambda function 472

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Rekognition Custom Labels Guide

if image.startswith('s3://'):
logger.info("Analyzing image from S3 bucket: %s", image)
bucket, key = image.replace("s3://", "").split("/", 1)
s3_object = {
'Bucket': bucket,
'Name': key
}
lambda_payload = {"S30bject": s3_object}

Call the lambda function with the image.
else:
with open(image, 'rb') as image_file:
logger.info("Analyzing local image image: %s ", image)
image_bytes = image_file.read()
data = baseb4.b64encode(image_bytes).decode("utf8")

lambda_payload = {"image": data}

response = lambda_client.invoke(FunctionName=function_name,
Payload=json.dumps(lambda_payload))

return json.loads(response['Payload'].read().decode())

def add_arguments(parser):
Adds command line arguments to the parser.
:param parser: The command line parser.

parser.add_argument(
"function", help="The name of the AWS Lambda function that you want " \
"to use to analyze the image.")

parser.add_argument(
"image", help="The local image that you want to analyze.")

def main():

Entrypoint for script.

try:
logging.basicConfig(level=1ogging.INFO,

Step 4: Try your Lambda function 473

Rekognition Custom Labels Guide

format="%(levelname)s: %(message)s")

Get command line arguments.

parser = argparse.ArgumentParser(usage=argparse.SUPPRESS)
add_arguments(parser)

args = parser.parse_args()

Get analysis results.
result = analyze_image(args.function, args.image)
status = result['statusCode']

if status == 200:
labels result['body']
labels json.loads(labels)
print(f"There are {len(labels)} labels in the image.")
for custom_label in labels:
confidence = int(round(custom_label['Confidence'], 0))
print(
f"Label: {custom_label['Name']}: Confidence: {confidencel}%")

else:
print(f"Error: {result['statusCode']}")
print(f"Message: {result['body']}")

except ClientError as error:
logging.error(error)

print(error)
if __name__ == "__main__":
main()

5. Run the code. For the command line argument, supply the Lambda function name and the
image that you want to analyze. You can supply a path to a local image, or the S3 path to an
image stored in an Amazon S3 bucket. For example:

python client.py function_name s3://bucket/path/image. jpg

If the image is in an Amazon S3 bucket make sure it is the same bucket that you specified in
step 15 of Step 1: Create an AWS Lambda function (console).

Step 4: Try your Lambda function 474

Rekognition Custom Labels Guide

If successful, the output is a list of labels found in the image. If no labels are returned, consider
lowering the confidence value that you set in step 7 of Step 1: Create an AWS Lambda function

(console).

6. If you have finished with the Lambda function and the model isn't used by other applications,
stop the model. Remember to start the model the next time you want use the Lambda

function.

Step 4: Try your Lambda function 475

Rekognition Custom Labels Guide

Security

You can secure the management of your projects, models, and the DetectCustomlLabels
operation that your customers use to detect custom labels.

For more information about securing Amazon Rekognition, see Amazon Rekognition Security.

Securing Amazon Rekognition Custom Labels projects

You can secure your Amazon Rekognition Custom Labels projects by specifying the resource-level
permissions that are specified in identity-based policies. For more information, see Identity-Based

Policies and Resource-Based Policies.

The Amazon Rekognition Custom Labels resources that you can secure are:

Resource Amazon Resource Name Format

Project arn:aws:rekognition:*:*:project/project_n
ame [datetime

Model arn:aws:rekognition:*:*:project/project_n
ame [version/name/datetime

The following example policy shows how to give an identity permission to:

Describe all projects.

Create, start, stop, and use a specific model for inference.

Create a project. Create and describe a specific model.

Deny the creation of a specific project.

"Version": "2012-10-17",
"Statement": [

{
"Sid": "AllResources",
"Effect": "Allow",
"Action": "rekognition:DescribeProjects",

Securing Amazon Rekognition Custom Labels projects 476

https://docs.aws.amazon.com/rekognition/latest/dg/security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Rekognition

Custom Labels Guide

"Resource": "*"

"Sid": "SpecificProjectVersion",
"Effect": "Allow",

"Action": [
"rekognition:
"rekognition:
"rekognition:
"rekognition:

1,

"Resource": "arn:

StopProjectVersion",
StartProjectVersion",
DetectCustomLabels",
CreateProjectVersion"

aws:rekognition:*:*:project/MyProject/version/MyVersion/*"

"Sid": "SpecificProject",
"Effect": "Allow",

"Action": [

"rekognition:
"rekognition:
"rekognition:
1,
"Resource": "arn:

CreateProject",
DescribeProjectVersions",
CreateProjectVersion"

aws:rekognition:*:*:project/MyProject/*"

"Sid": "ExplicitDenyCreateProject",

"Effect": "Deny",
"Action": [
"rekognition:

]I

CreateProject"”

"Resource": ["arn:aws:rekognition:*:*:project/SampleProject/*"]

Securing DetectCustomLabels

The identity used to detect custom labels might be different from the identity that manages

Amazon Rekognition Custom Labels models.

You can secure access an identity's access to DetectCustomLabels by applying a policy to the

identity. The following example restricts access to DetectCustomLabels only and to a specific

model. The identity doesn't have access to any of the other Amazon Rekognition operations.

Securing DetectCustomLabels

477

Rekognition Custom Labels Guide

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"rekognition:DetectCustomLabels"
1,
"Resource": "arn:aws:rekognition:*:*:project/MyProject/version/MyVersion/*"
}
]
}

AWS managed policies

We provide the AmazonRekognitionCustomLabelsFullAccess AWS managed policy that you
can use to control access to Amazon Rekognition Custom Labels. For more information, see AWS
managed policy: AmazonRekognitionCustomLabelsFullAccess.

AWS managed policies 478

https://docs.aws.amazon.com/rekognition/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-custom-labels-full-access
https://docs.aws.amazon.com/rekognition/latest/dg/security-iam-awsmanpol.html#security-iam-awsmanpol-custom-labels-full-access

Rekognition Custom Labels Guide

Guidelines and quotas in Amazon Rekognition Custom
Labels

The following sections provide guidelines and quotas when using Amazon Rekognition Custom
Labels.

Supported Regions

For a list of AWS Regions where Amazon Rekognition Custom Labels is available, see AWS Regions
and Endpoints in the Amazon Web Services General Reference.

Quotas

The following is a list of limits in Amazon Rekognition Custom Labels. For information about limits
you can change, see AWS Service Limits. To change a limit, see Create Case.

Training

» Supported file formats are PNG and JPEG image formats.

« Maximum number of training datasets in a version of a model is 1.

« Maximum dataset manifest file size is 1 GB.

« Minimum number of unique labels per Objects, Scenes, and Concepts (classification) dataset is 2.
e Minimum number of unique labels per Object Location (detection) dataset is 1.

o Maximum number of unique labels per manifest is 250.

o Minimum number of images per label is 1.

« Maximum number of images per Object Location (detection) dataset is 250,000.

The limit for Asia Pacific (Mumbai) and Europe (London) AWS Regions is 28,000 images.

« Maximum number of images per Objects, Scenes, and Concepts (classification) dataset is
500,000. The default is 250,000. To request an increase, see Create Case.

The limit for Asia Pacific (Mumbai) and Europe (London) AWS Regions is 28,000 images. You can't
request a limit increase.

o Maximum number of labels per image is 50.

Supported Regions 479

https://docs.aws.amazon.com/general/latest/gr/rekognition.html
https://docs.aws.amazon.com/general/latest/gr/rekognition.html
https://docs.aws.amazon.com/general/latest/gr/rekognition.html
https://console.aws.amazon.com/support/v1#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/support/v1#/case/create?issueType=service-limit-increase

Rekognition Custom Labels Guide

o Minimum number of bounding boxes in an image is 0.

o Maximum number of bounding boxes in an image is 50.

« Minimum image dimension of image file in an Amazon S3 bucket is 64 pixels x 64 pixels.

« Maximum image dimension of image file in an Amazon S3 bucket is 4096 pixels x 4096 pixels.
« Maximum file size for an image in an Amazon S3 bucket is 15 MB.

« Maximum image aspect ratio is 20:1.

Testing

« Maximum number of testing datasets in a version of a model is 1.

« Maximum dataset manifest file size is 1 GB.

« Minimum number of unique labels per Objects, Scenes, and Concepts (classification) dataset is 2.
o Minimum number of unique labels per Object Location (detection) dataset is 1.

« Maximum number of unique labels per dataset is 250.

« Minimum number of images per label is O.

« Maximum number of images per label is 1000.

« Maximum number of images per Object Location (detection) dataset is 250,000.

The limit for Asia Pacific (Mumbai) and Europe (London) AWS Regions is 7,000 images.

« Maximum number of images per Objects, Scenes, and Concepts (classification) dataset is
500,000. The default is 250,000. To request an increase, see Create Case.

The limit for Asia Pacific (Mumbai) and Europe (London) AWS Regions is 7,000 images. You can't
request a limit increase.

o Minimum number of labels per image per manifest is 0.

o Maximum number of labels per image per manifest is 50.

o Minimum number of bounding boxes in an image per manifest is O.

« Maximum number of bounding boxes in an image per manifest is 50.

« Minimum image dimension of an image file in an Amazon S3 bucket is 64 pixels x 64 pixels.

« Maximum image dimension of an image file in an Amazon S3 bucket is 4096 pixels x 4096 pixels.
« Maximum file size for an image in an Amazon S3 bucket is 15 MB.

» Supported file formats are PNG and JPEG image formats.

Testing 480

https://console.aws.amazon.com/support/v1#/case/create?issueType=service-limit-increase

Rekognition Custom Labels Guide

o Maximum image aspect ratio is 20:1.

Detection

« Maximum size of images passed as raw bytes is 4 MB.
o Maximum file size for an image in an Amazon S3 bucket is 15 MB.

o Minimum image dimension of an input image file (stored in an Amazon S3 bucket or supplied as
image bytes) is 64 pixels x 64 pixels.

« Maximum image dimension of an input image file (stored in an Amazon S3 or supplied as image
bytes) is 4096 pixels x 4096 pixels.

» Supported file formats are PNG and JPEG image formats.

o Maximum image aspect ratio is 20:1.

Model copying

« The maximum number of project policies that you can attach to a project is 5.

o The maximum number of concurrent copy jobs in a destination is 5.

Detection 481

Rekognition Custom Labels Guide

Amazon Rekognition Custom Labels API reference

The Amazon Rekognition Custom Labels APl is documented as part of the Amazon Rekognition

API reference content. This is a list of the Amazon Rekognition Custom Labels API operations with
links to the appropriate Amazon Rekognition API reference topic. Also, API reference links within
this document go to the appropriate Amazon Rekognition Developer Guide API reference topic. For
information about using the API, see

This section gives you an overview of the workflow to train and use an Amazon Rekognition
Custom Labels model with the console and the AWS SDK.

® Note

Amazon Rekognition Custom Labels now manages datasets within a project. You can create
datasets for your projects with the console and with the AWS SDK. If you have previously

used Amazon Rekognition Custom Labels, your older datasets might need associating with

a new project. For more information, see Step 6: (Optional) Associate prior datasets with
new projects

Topics

« Decide your model type

+ Create a model

« Improve your model

« Start your model

« Analyze an image

» Stop your model

Decide your model type

You first decide which type of model you want to train, which depends on your business goals. For

example, you could train a model to find your logo in social media posts, identify your products on

store shelves, or classify machine parts in an assembly line.

Decide your model type 482
Amazon Rekognition Custom Labels can train the following types of model:

Rekognition Custom Labels Guide

» Find objects, scenes, and concepts

« Find object locations

o Find the location of brands

To help you decide which type of model to train, Amazon Rekognition Custom Labels provides

example projects that you can use. For more information, see Getting started with Amazon
Rekognition Custom Labels.

Find objects, scenes, and concepts

The model predicts classifications for the objects, scenes, and concepts associated with an entire

image. For example, you can train a model that determines if an image contains a tourist attraction,

or not. For an example project, see Image classification. The following image of a lake is an

example of the kind of image you can recognize objects, scenes, and concepts in.

Find objects, scenes, and concepts 483

Rekognition Custom Labels Guide

Alternatively, you can train a model that categorizes images into multiple categories. For example,

the previous image might have categories such as sky color, reflection, or lake. For an example
project, see Multi-label image classification.

Find object locations

The model predicts the location of an object on an image. The prediction includes bounding box

information for the object location and a label that identifies the object within the bounding box.

For example, the following image shows bounding boxes around various parts of a circuit board,

such as a comparator or pot resistor.

Pot resistor

A

8
Z
2
-
o

L -(

|

Comparator

The Object localization example project shows how Amazon Rekognition Custom Labels uses

labeled bounding boxes to train a model that finds object locations.

Find the location of brands

Amazon Rekognition Custom Labels can train a model that finds the location of brands, such as

logos, on an image. The prediction includes bounding box information for the brand location
and a label that identifies the object within the bounding box. For an example project, see Brand
detection. The following image is an example of some of the brands that the model can detect.

Find object locations 484

Rekognition Custom Labels Guide

l

user activity AWS Lambda

Pinpoint

recommendations @
h %
Ca

Create a model

The steps to create a model are creating a project, creating training and test datasets, and training

the model.

Create a project

An Amazon Rekognition Custom Labels project is a group of resources needed to create and

manage a model. A project manages the following:

» Datasets — The images and image labels used to train a model. A project has a training dataset
and a test dataset.

» Models - The software that you train to find the concepts, scenes, and objects unique to your
business. You can have multiple versions of a model in a project.

We recommend that you use a project for a single use case, such as finding circuit board parts on a

circuit board.

You can create a project with the Amazon Rekognition Custom Labels console and with the

CreateProject API. For more information, see Creating a project.

Create a model 485

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProject

Rekognition Custom Labels Guide

Create training and test datasets

A dataset is a set of images and labels that describe those images. Within your project, you create

a training dataset and a test dataset that Amazon Rekognition Custom Labels uses to train and test

your model.

A label identifies an object, scene, concept, or bounding box around an object in an image. Labels

are either assigned to an entire image (image-level) or they are assigned to a bounding box that

surrounds an object on an image.

A Important

How you label the images in your datasets determines the type of model that Amazon
Rekognition Custom Labels creates. For example, to train a model that finds objects, scenes

and concepts, you assign image level labels to the images in your training and test datasets.
For more information, see Purposing datasets.

Images must be in PNG and JPEG format, and you should follow the input images

recommendations. For more information, see Preparing images.

Create training and test datasets (Console)

You can start a project with a single dataset, or with separate training and test datasets. If you

start with a single dataset, Amazon Rekognition Custom Labels splits your dataset during training

to create a training dataset (80%) and a test dataset (20%) for your project. Start with a single

dataset if you want Amazon Rekognition Custom Labels to decide which images are used for

training and testing. For complete control over training, testing, and performance tuning, we

recommend that you start your project with separate training and test datasets.

To create the datasets for a project, you import the images in one of the following ways:

» Import images from your local computer.

« Import images from an S3 bucket. Amazon Rekognition Custom Labels can label the images
using the folder names that contain the images.

« Import an Amazon SageMaker Al Ground Truth manifest file.

» Copy an existing Amazon Rekognition Custom Labels dataset.

Create training and test datasets 486

Rekognition Custom Labels Guide

For more information, see Creating training and test datasets with images.

Depending on where you import your images from, your images might be unlabeled. For example,

images imported from a local computer aren't labeled. Images imported from an Amazon
SageMaker Al Ground Truth manifest file are labeled. You can use the Amazon Rekognition Custom
Labels console to add, change, and assign labels. For more information, see Labeling images.

To create your training and test datasets with the console, see Creating training and test datasets
with images. For a tutorial that includes creating training and test datasets, see Classifying images.

Create training and test datasets (SDK)

To create your training and test datasets, you use the CreateDataset API. You can create a
dataset by using an Amazon Sagemaker format manifest file or by copying an existing Amazon
Rekognition Custom Labels dataset. For more information, see Create training and test datasets
(SDK) If necessary, you can create your own manifest file. For more information, see the section

called “Creating a manifest file".

Train your model

Train your model with the training dataset. A new version of a model is created each time it is
trained. During training, Amazon Rekognition Custom Labels test the performance of your trained

model. You can use the results to evaluate and improve your model. Training takes a while to
complete. You are only charged for a successful model training. For more information, see Training
an Amazon Rekognition Custom Labels model. If model training fails, Amazon Rekognition Custom
Labels provides debugging information that you can use. For more information, see Debugging a
failed model training.

Train your model (Console)

To train your model with the console, see Training a model (Console).

Training a model (SDK)

You train an Amazon Rekognition Custom Labels model by calling CreateProjectVersion. For more
information, see Training a model (SDK).

Train your model 487

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion

Rekognition Custom Labels Guide

Improve your model

During testing, Amazon Rekognition Custom Labels creates evaluation metrics that you can use to

improve your trained model.

Evaluate your model

Evaluate the performance of your model by using the performance metrics created during testing.

Performance metrics, such as F1, precision, and recall, allow you to understand the performance

of your trained model, and decide if you're ready to use it in production. For more information, see

Metrics for evaluating your model.

Evaluate a model (console)

To view performance metrics, see Accessing evaluation metrics (Console).

Evaluate a model (SDK)

To get performance metrics, you call DescribeProjectVersions to get the testing results. For

more information, see Accessing Amazon Rekognition Custom Labels evaluation metrics (SDK).

The testing results include metrics not available in the console, such as a confusion matrix for

classification results. The testing results are returned in the following formats:

» F1 score - A single value representing the overall performance of precision and recall for the
model. For more information, see F1.

« Summary file location - The testing summary includes aggregated evaluation metrics for the
entire testing dataset and metrics for each individual label. DescribeProjectVersions

returns the S3 bucket and folder location of the summary file. For more information, see
Accessing the model summary file.

» Evaluation manifest snapshot location — The snapshot contains details about the test results,
including the confidence ratings and the results of binary classification tests, such as false

positives. DescribeProjectVersions returns the S3 bucket and folder location of the
snapshot files. For more information, see Interpreting the evaluation manifest snapshot.

Improve your model

If improvements are needed, you can add more training images or improve dataset labeling. For

more information, see Improving an Amazon Rekognition Custom Labels model. You can also give

Improve your model 488

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions

Rekognition Custom Labels Guide

feedback on the predictions your model makes and use it to make improvements to your model.
For more information, see Improving a model with Model feedback.

Improve your model (console)

To add images to a dataset, see Adding more images to a dataset. To add or change labels, see the

section called “Labeling images”.

To retrain your model, see Training a model (Console).

Improve your model (SDK)

To add images to a dataset or change the labeling for an image, use the UpdateDatasetEntries
APl. UpdateDatasetEntries updates or adds JSON lines to a manifest file. Each JSON line
contains information for a single image, such as assigned labels or bounding box information.

For more information, see Adding more images (SDK). To view the entries in a dataset, use the
ListDatasetEntries API.

To retrain your model, see Training a model (SDK).

Start your model

Before you can use your model, you start the model by using the Amazon Rekognition Custom

Labels console or the StartProjectVersion API. You are charged for the amount of time that

your model runs. For more information, see Running a trained model.

Start your model (console)

To start your model using the console, see Starting an Amazon Rekognition Custom Labels model

(Console).

Start your model

You start your model calling StartProjectVersion. For more information, see Starting an Amazon
Rekognition Custom Labels model (SDK).

Start your model 489

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StartProjectVersion

Rekognition Custom Labels Guide

Analyze an image

To analyze an image with your model, you use the DetectCustomLabels API. You can specify a

local image, or an image stored in an S3 bucket. The operation also requires the Amazon Resource
Name (ARN) of the model that you want to use.

If your model finds objects, scenes, and concepts, the response includes a list of image-level labels

found in the image. For example, the following image shows the image-level labels found using

Rooms example project.

If the model finds object locations, the response includes list of labeled bounding boxes found

in the image. A bounding box represents the location of an object on an image. You can use the

bounding box information to draw a bounding box around an object. For example, the following

image shows bounding boxes around circuit board parts found using the Circuit boards example

project.

Analyze an image 490

Rekognition Custom Labels Guide

For more information, see Analyzing an image with a trained model.

Stop your model

You are charged for the time that your model is running. If you are no longer using your model,

stop the model by using the Amazon Rekognition Custom Labels console, or by using the

StopProjectVersion API For more information, see Stopping an Amazon Rekognition Custom

Labels model.

Stop your model (Console)

To stop a running model with the console, see Stopping an Amazon Rekognition Custom Labels

model (Console).

Stop your model (SDK)

To stop a running model, call StopProjectVersion. For more information, see Stopping an Amazon

Rekognition Custom Labels model (SDK).

Stop your model 491

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StopProjectVersion

Rekognition Custom Labels Guide

Training your model

Projects

» CreateProject — Creates your Amazon Rekognition Custom Labels project which is a logical

grouping of resources (images, Labels, models) and operations (training, evaluation, and
detection).

o DeleteProject — Deletes an Amazon Rekognition Custom Labels project.

» DescribeProjects — Returns a list of all your Amazon Rekognition Custom Labels projects.

Project Policies

» PutProjectPolicy — Attaches a project policy to a Amazon Rekognition Custom Labels project in a

trusting AWS account.

 ListProjectPolicies — Returns a list of the project policies attached to a project.

» DeleteProjectPolicy — Deletes an existing project policy.

Datasets

» CreateDataset — Creates a Amazon Rekognition Custom Labels dataset.

o DeleteDataset — Deletes an Amazon Rekognition Custom Labels dataset.

» DescribeDataset — Describes an Amazon Rekognition Custom Labels dataset.

 DistributeDatasetEntries — Distributes the entries (images) in a training dataset across the

training dataset and the test dataset for a project.

» ListDatasetEntries — Returns a list of entries (images) in an Amazon Rekognition Custom Labels

dataset.

» ListDatasetLabels — Returns a list of labels assigned to an Amazon Rekognition Custom Labels
dataset.

« UpdateDatasetEntries — Adds or updates entries (images) in an Amazon Rekognition Custom
Labels dataset.

Training your model 492

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProject
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProject
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjects
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_PutProjectPolicy
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListProjectPolicies
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProjectPolicy
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateDataset
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteDataset
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeDataset
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DistributeDatasetEntries
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListDatasetEntries
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_ListDatasetLabels
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_UpdateDatasetEntries

Rekognition Custom Labels Guide

Models

» CreateProjectVersion — Trains your Amazon Rekognition Custom Labels model.

« CopyProjectVersion — Copies your Amazon Rekognition Custom Labels model.

» DeleteProjectVersion — Deletes an Amazon Rekognition Custom Labels model.

» DescribeProjectVersions — Returns a list of all the Amazon Rekognition Custom Labels models
within a specific project.

Tags

« TagResource — Adds one or more key-value tags to an Amazon Rekognition Custom Labels
model.

« UntagResource — Removes one or more tags from an Amazon Rekognition Custom Labels
model.

Using your model

o DetectCustomLabels — Analyzes an image with your custom labels model.

» StartProjectVersion — Starts your custom labels model.

» StopProjectVersion — Stops your custom labels model.

Models 493

https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CreateProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_CopyProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DeleteProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DescribeProjectVersions
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_TagResource
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_UntagResource
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_DetectCustomLabels
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StartProjectVersion
https://docs.aws.amazon.com/rekognition/latest/APIReference/API_StopProjectVersion

Rekognition Custom Labels Guide

Document history for Amazon Rekognition Custom
Labels

The following table describes important changes in each release of the Amazon Rekognition
Custom Labels Developer Guide. For notification about updates to this documentation, you can
subscribe to an RSS feed.

» Latest documentation update: April 19th, 2023

Change Description Date

Added model duration topic Shows how to get the April 19, 2023
number of hours run and

the inference units used by
a model. For more informati
on, see Reporting running

duration and inference units
used.

Reorganized dataset content Moved manifest file creation February 20, 2023

content to Manifest file.
Moved dataset conversion
topics to Converting other

dataset formats to a manifest

file.
Updated the IAM guidance for Updated guide to align February 15, 2023
AWS WAF with the IAM best practices

. For more information, see
Security best practices in IAM.

View the confusion matrix for = The Amazon Rekognition January 4, 2023

a classification model Custom Labels console
doesn't show the confusion

matrix for a classification
model. Instead, you can use

494

https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/rm-model-usage.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/rm-model-usage.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/rm-model-usage.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-create-dataset-ground-truth.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-converting-to-sm-format.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-converting-to-sm-format.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-converting-to-sm-format.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Rekognition

Custom Labels Guide

Updated Lambda function
example

Amazon Rekognition Custom

Labels can now copy trained

models

Amazon Rekognition Custom

Labels can now automatically

scale inference units.

AWS SDK to get and show a
confusion matrix. For more
information, see Viewing the
confusion matrix for a model.

The Lambda function
example now shows how to
analyze images passed from
a local file or an Amazon S3
bucket. For more information,
see Analyzing images with an
AWS Lambda function.

You can now copy a trained
model from one AWS account
to another AWS account
within the same AWS Region.
For more information, see
Copying an Amazon Rekogniti

on Custom Labels model
(SDK).

To help with spikes in
demand, Amazon Rekogniti
on Custom Labels can now
scale the number of inference
units that your model uses.
For more information, see
Running a trained Amazon

Rekognition Custom Labels

model.

December 2, 2022

August 16, 2022

August 16, 2022

495

https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/im-confusion-matrix.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/im-confusion-matrix.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/ex-lambda.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/ex-lambda.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-copy-model-overview.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-copy-model-overview.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-copy-model-overview.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/running-model.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/running-model.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/running-model.html

Rekognition

Custom Labels Guide

Create a manifest file from a
CSV file

Amazon Rekognition Custom

Labels now manages datasets
with projects

Amazon Rekognition Custom
Labels is integrated with AWS
CloudFormation

Updated getting started
experience

You can now simplify the
creation of a manifest file

by using a script that reads
image classification informati
on from a CSV file. For more
information, see Creating a
manifest file from a CSV file.

You can use projects to
manage the training and
test datasets that you use
to create a model. For more
information, see Understan
ding Amazon Rekognition

Custom Labels.

You can use AWS CloudForm
ation to provision and
configure Amazon Rekogniti
on Custom Labels projects.
For more information, see
Creating a project with AWS

CloudFormation.

The Amazon Rekognition
Custom Labels console now
includes tutorial videos

and example projects. For
more information, see
Getting started with Amazon

Rekognition Custom Labels.

February 2, 2022

November 1, 2021

October 21, 2021

July 22, 2021

496

https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/ex-csv-manifest.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/ex-csv-manifest.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/understanding-custom-labels.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/understanding-custom-labels.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/understanding-custom-labels.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/cloudformation.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/cloudformation.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/gs-introduction.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/gs-introduction.html

Rekognition

Custom Labels Guide

Updated information about

thresholds and using metrics

Added AWS KMS key support

Added tagging

Updated setup topic

Added dataset copy topic

Information about setting
a desired threshold value
by using the MinConfid
ence input parameter to
DetectCustomlLabels
For more information, see
Analyzing an image with a

trained model.

You can now use your own
KMS key to encrypt your
training and test images.
For more information, see
Training a model.

Amazon Rekognition Custom
Labels now supports tagging.
You can use tags to identify,
organize, search for, and
filter your Amazon Rekogniti
on Custom Labels models.
For more information, see
Tagging a model.

Updated setup information
on how to encrypt training
files. For more informati
on, see Step 5: (Optional)
Encrypting training files.

Information on how to copy

a dataset to a different AWS
Region. For more informati
on, see Copying a dataset to a

different AWS region.

June 8, 2021

May 19, 2021

March 25, 2021

March 18, 2021

March 5, 2021

497

https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/detecting-custom-labels.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/detecting-custom-labels.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/training-model.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/tm-tagging-model.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/su-encrypt-bucket.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/su-encrypt-bucket.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/dataset-region-transfer.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/dataset-region-transfer.html

Rekognition

Custom Labels Guide

Added Amazon SageMaker
Al GroundTruth multi-label
manifest transform topic

Added debugging information

for model training

Added COCO transform
information and example

Amazon Rekognition Custom

Labels now supports single

object training

Information on how to
transform an Amazon
SageMaker Al GroundTruth
multi-label format manifest
to a Amazon Rekogniti

on Custom Labels format
manifest file. For more
information, see Transform
ing multi-label SageMaker Al

Ground Truth manifest files.

You can now use validation
results manifests to get in-
depth debugging information
about model training errors.
For more information, see
Debugging a failed model

training.

Information on how to
transform a COCO object
detection format dataset
into an Amazon Rekognition
Custom Labels manifest file.
For more information, see
Transforming COCO datasets.

To create an Amazon
Rekognition Custom Labels
model that finds the location
of a single object, you can
now create a dataset that
only requires one label.

For more information, see
Drawing bounding boxes.

February 22, 2021

October 8, 2020

September 2, 2020

June 25, 2020

498

https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-gt-cl-transform.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-gt-cl-transform.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-gt-cl-transform.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/tm-debugging.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/tm-debugging.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-transform-coco.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/md-localize-objects.html

Rekognition

Custom Labels Guide

Project and model delete

operations added

Added Java examples

New feature and guide

You can now delete Amazon April 1, 2020
Rekognition Custom Labels

projects and models with the

console and with the API.

For more information, see

Deleting an Amazon Rekogniti

on Custom Labels Model and

Deleting an Amazon Rekogniti

on Custom Labels project

Added Java examples December 13, 2019
covering project creation,

model training, model

running, and image analysis.

This is the initial release December 3, 2019
of the Amazon Rekogniti

on Custom Labels feature

and the Amazon Rekogniti

on Custom Labels Developer

Guide.

499

https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/tm-delete-model.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/tm-delete-model.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/mp-delete-project.html
https://docs.aws.amazon.com/rekognition/latest/customlabels-dg/mp-delete-project.html

	Rekognition
	Table of Contents
	What is Amazon Rekognition Custom Labels?
	Key benefits
	Choosing to use Amazon Rekognition Custom Labels
	Amazon Rekognition Image label detection
	Amazon Rekognition Custom Labels

	Are you a first-time Amazon Rekognition Custom Labels user?

	Setting up Amazon Rekognition Custom Labels
	Step 1: Create an AWS account
	Sign up for an AWS account
	Create a user with administrative access
	Programmatic access

	Step 2: Set up Amazon Rekognition Custom Labels console permissions
	Allowing console access
	Accessing external Amazon S3 Buckets
	Assigning permissions

	Step 3: Create the console bucket
	Step 4: Set up the AWS CLI and AWS SDKs
	Install the AWS SDKS
	Grant programmatic access
	Running code on your local computer
	Using a profile on your local computer

	Running code in AWS environments

	Set up SDK permissions
	Granting SDK operation permissions
	Policy updates for using the AWS SDK
	Assigning permissions

	Call an Amazon Rekognition Custom Labels operation

	Step 5: (Optional) Encrypt training files
	Decrypting files encrypted with AWS Key Management Service
	Encrypting copied training and test images

	Step 6: (Optional) Associate prior datasets with new projects
	Using a prior dataset as a test dataset

	Understanding Amazon Rekognition Custom Labels
	Decide your model type
	Find objects, scenes, and concepts
	Find object locations
	Find the location of brands

	Create a model
	Create a project
	Create training and test datasets
	Create training and test datasets (Console)
	Create training and test datasets (SDK)

	Train your model
	Train your model (Console)
	Training a model (SDK)

	Improve your model
	Evaluate your model
	Evaluate a model (console)
	Evaluate a model (SDK)

	Improve your model
	Improve your model (console)
	Improve your model (SDK)

	Start your model
	Start your model (console)
	Start your model

	Analyze an image
	Stop your model
	Stop your model (Console)
	Stop your model (SDK)

	Getting started with Amazon Rekognition Custom Labels
	Tutorial videos
	Example projects
	Image classification
	Multi-label image classification
	Brand detection
	Object localization

	Using the example projects
	Creating the example project
	Training the model
	Using the model
	Next steps

	Step 1: Choose an example project
	Step 2: Train your model
	Step 3: Start your model
	Step 4: Analyze an image with your model
	Getting an example image
	Image classification
	Multi-label classification
	Brand detection
	Object localization

	Step 5: Stop your model
	Step 6: Next steps

	Classifying images
	Step 1: Collect your images
	Step 2: Decide your classes
	Step 3: Create a project
	Step 4: Create training and test datasets
	Step 5: Add labels to the project
	Step 6: Assign image-level labels to training and test datasets
	Step 7: Train your model
	Step 8: Start your model
	Step 9: Analyze an image with your model
	Step 10: Stop your model

	Creating an Amazon Rekognition Custom Labels model
	Creating a project
	Creating an Amazon Rekognition Custom Labels Project (Console)
	Creating an Amazon Rekognition Custom Labels project (SDK)
	CreateProject operation request

	Creating training and test datasets
	Purposing datasets
	Find objects, scenes, and concepts
	Image classification
	Multi-label classification
	Assigning image-level labels

	Find object locations
	Assigning bounding boxes

	Find brand locations
	Label requirements for model types

	Preparing images
	Image format
	Input image recommendations
	

	Image set size

	Creating training and test datasets with images
	Create training and test datasets (SDK)
	Training dataset
	Test dataset

	Importing images from an Amazon S3 bucket
	Creating a dataset by importing images from an S3 bucket

	Importing images from a local computer
	Using a manifest file to import images
	Creating a dataset with a SageMaker AI Ground Truth manifest file (Console)
	Creating a dataset with a SageMaker AI Ground Truth manifest file (SDK)
	Create dataset request
	Labeling images with an Amazon SageMaker AI Ground Truth job
	Creating a manifest file with a SageMaker AI Ground Truth job (Console)

	Creating a manifest file
	Creating a manifest file

	Importing image-level labels in manifest files
	Image-Level JSON Lines
	source-ref
	testdataset-classification_Sunrise
	testdataset-classification_Sunrise-metadata
	Adding multiple image-level labels to an image

	Object localization in manifest files
	Object bounding Box JSON lines
	source-ref
	bounding-box
	bounding-box-metadata

	Validation rules for manifest files
	Limits
	Semantics

	Converting other dataset formats to a manifest file
	Transforming a COCO dataset into a manifest file format
	Mapping COCO Objects to a Custom Labels JSON Line
	Mapping COCO object fields to a Custom Labels JSON line object fields
	source-ref
	bounding-box
	image_size
	annotations
	annotation

	bounding-box-metadata
	Objects
	Object

	class-map
	type
	human-annotated
	creation-date -> image.date_captured
	job-name

	The COCO dataset format
	images list
	annotations (bounding boxes) list
	categories list

	Transforming a COCO dataset

	Transforming multi-label SageMaker AI Ground Truth manifest files
	Getting the manifest file for a SageMaker AI Ground Truth job
	Transforming a multi-label SageMaker AI manifest file

	Creating a manifest file from a CSV file

	Copying content from an existing dataset

	Labeling images
	Managing labels
	Managing labels (Console)
	Add new labels (Console)
	Add labels using the editing window

	Change and remove labels (Console)

	Managing Labels (SDK)

	Assigning image-level labels to an image
	Assign image-level labels (SDK)

	Labeling objects with bounding boxes
	Locate objects with bounding boxes (Console)
	Locate objects with bounding boxes (SDK)

	Debugging datasets
	Debugging terminal dataset errors
	Terminal file errors
	ERROR_MANIFEST_INACCESSIBLE_OR_UNSUPPORTED_FORMAT
	Error message

	ERROR_MANIFEST_SIZE_TOO_LARGE
	Error message

	ERROR_MANIFEST_ROWS_EXCEEDS_MAXIMUM
	Error message
	More information

	ERROR_INVALID_PERMISSIONS_MANIFEST_S3_BUCKET
	Error message

	ERROR_TOO_MANY_RECORDS_IN_ERROR
	Error message

	ERROR_MANIFEST_TOO_MANY_LABELS
	Error message
	More information

	ERROR_INSUFFICIENT_IMAGES_PER_LABEL_FOR_DISTRIBUTE
	Error message

	Terminal content errors

	Debugging non-terminal dataset errors
	Accessing non-terminal errors

	Training an Amazon Rekognition Custom Labels model
	Training a model (Console)
	Training a model (SDK)
	Training a model (SDK)

	Debugging a failed model training
	Terminal errors
	Service errors
	List of terminal manifest file errors
	List of terminal manifest content errors

	List of non-terminal JSON line validation errors
	Understanding the manifest summary
	Manifest summary file format
	statistics
	errors

	Example manifest summary

	Understanding training and testing validation result manifests
	JSON line error format
	Image Level Errors
	Object localization errors

	Example JSON line error

	Getting the validation results
	Getting validation results (Console)
	Getting validation results (SDK)

	Fixing training errors
	JSON line error precedence

	Terminal manifest file errors
	The manifest file extension or contents are invalid.
	The manifest file is empty.
	The manifest file size exceeds the maximum supported size.
	The S3 bucket permissions are incorrect.
	Unable to write to output S3 bucket.

	Terminal manifest content errors
	ERROR_TOO_MANY_INVALID_ROWS_IN_MANIFEST
	Error message
	More information

	ERROR_IMAGES_IN_MULTIPLE_S3_BUCKETS
	Error message
	More information

	ERROR_INVALID_PERMISSIONS_IMAGES_S3_BUCKET
	Error message
	More information

	ERROR_INVALID_IMAGES_S3_BUCKET_OWNER
	Error message
	More information

	ERROR_INSUFFICIENT_IMAGES_PER_LABEL_FOR_AUTOSPLIT
	Error message
	More information

	ERROR_MANIFEST_TOO_FEW_LABELS
	Error message
	More information

	ERROR_MANIFEST_TOO_MANY_LABELS
	Error message
	More information

	ERROR_INSUFFICIENT_LABEL_OVERLAP
	Error message
	More information

	ERROR_MANIFEST_TOO_FEW_USABLE_LABELS
	Error message
	More information

	ERROR_INSUFFICIENT_USABLE_LABEL_OVERLAP
	Error message
	More information

	ERROR_FAILED_IMAGES_S3_COPY
	Error message
	More information

	The manifest file has too many terminal errors.

	Non-Terminal JSON Line Validation Errors
	ERROR_MISSING_SOURCE_REF
	Error message
	More information

	ERROR_INVALID_SOURCE_REF_FORMAT
	Error message
	More information

	ERROR_NO_LABEL_ATTRIBUTES
	Error message
	More information

	ERROR_INVALID_LABEL_ATTRIBUTE_FORMAT
	Error message
	More information

	ERROR_INVALID_LABEL_ATTRIBUTE_METADATA_FORMAT
	Error message
	More information

	ERROR_NO_VALID_LABEL_ATTRIBUTES
	Error message
	More information

	ERROR_MISSING_BOUNDING_BOX_CONFIDENCE
	Error message
	More information

	ERROR_MISSING_CLASS_MAP_ID
	Error message
	More information

	ERROR_INVALID_JSON_LINE
	Error message
	More information

	ERROR_INVALID_IMAGE
	Error message
	More information

	ERROR_INVALID_IMAGE_DIMENSION
	Error message
	More information

	ERROR_INVALID_BOUNDING_BOX
	Error message
	More information

	ERROR_NO_VALID_ANNOTATIONS
	Error message
	More information

	ERROR_BOUNDING_BOX_TOO_SMALL
	Error message
	More information

	ERROR_TOO_MANY_BOUNDING_BOXES
	Error message
	More information

	WARNING_UNANNOTATED_RECORD
	Warning Message
	More information

	WARNING_NO_ANNOTATIONS
	Warning Message
	More information

	WARNING_NO_ATTRIBUTE_ANNOTATIONS
	Warning Message
	More information

	ERROR_UNSUPPORTED_USE_CASE_TYPE
	Warning Message
	More information

	ERROR_INVALID_LABEL_NAME_LENGTH
	More information

	Improving a trained Amazon Rekognition Custom Labels model
	Metrics for evaluating your model
	Evaluating model performance
	Intersection over Union (IoU) and object detection

	Assumed threshold
	Precision
	Recall
	F1
	Using metrics

	Accessing evaluation metrics (Console)
	Accessing Amazon Rekognition Custom Labels evaluation metrics (SDK)
	Accessing the model summary file
	Interpreting the evaluation manifest snapshot
	Accessing the summary file and evaluation manifest snapshot (SDK)
	Viewing the confusion matrix for a model
	Using a confusion matrix
	Getting the confusion matrix for a model

	Reference: Training results summary file
	Summary file

	Improving an Amazon Rekognition Custom Labels model
	Data
	Reducing false positives (better precision)
	Reducing false negatives (better recall)

	Running a trained Amazon Rekognition Custom Labels model
	Inference units
	Managing throughput with inference units
	Manually add or remove inference units
	Auto-scale inference units

	Availability Zones
	Starting an Amazon Rekognition Custom Labels model
	Starting an Amazon Rekognition Custom Labels model (Console)
	Starting an Amazon Rekognition Custom Labels model (SDK)

	Stopping an Amazon Rekognition Custom Labels model
	Stopping an Amazon Rekognition Custom Labels model (Console)
	Stopping an Amazon Rekognition Custom Labels model (SDK)

	Reporting running duration and inference units used

	Analyzing an image with a trained model
	DetectCustomLabels operation request
	DetectCustomLabels operation response

	Managing Amazon Rekognition Custom Labels resources
	Managing an Amazon Rekognition Custom Labels project
	Deleting an Amazon Rekognition Custom Labels project
	Deleting an Amazon Rekognition Custom Labels project (Console)
	Deleting an Amazon Rekognition Custom Labels project (SDK)

	Describing a project (SDK)
	Creating a project with AWS CloudFormation
	Amazon Rekognition Custom Labels and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Managing datasets
	Adding a dataset to a project
	Adding a dataset to a project (Console)
	Adding a dataset to a project (SDK)

	Adding more images to a dataset
	Adding more images (console)
	Adding more images (SDK)

	Creating a dataset using an existing dataset (SDK)
	Describing a dataset (SDK)
	Listing dataset entries (SDK)
	Distributing a training dataset (SDK)
	Deleting a dataset
	Deleting a dataset (Console)
	Deleting an Amazon Rekognition Custom Labels dataset (SDK)

	Managing an Amazon Rekognition Custom Labels model
	Deleting an Amazon Rekognition Custom Labels model
	Deleting an Amazon Rekognition Custom Labels model (Console)
	Deleting an Amazon Rekognition Custom Labels model (SDK)

	Tagging a model
	Tagging models (console)
	Adding or removing tags

	Viewing model tags
	Tagging models (SDK)
	Adding tags to a new model
	Adding tags to an existing model
	Listing model tags
	Deleting tags from a model

	Describing a model (SDK)
	Copying an Amazon Rekognition Custom Labels model (SDK)
	Creating a project policy document
	Attaching a project policy (SDK)
	Copying a model (SDK)
	Listing project policies (SDK)
	Deleting a project policy (SDK)

	Custom Labels Examples
	Improving a model with Model feedback
	Amazon Rekognition Custom Labels demonstration
	Detecting Custom Labels in videos
	Analyzing images with an AWS Lambda function
	Step 1: Create an AWS Lambda function (console)
	Step 2: (Optional) Create a layer (console)
	Step 3: Add Python code (console)
	Step 4: Try your Lambda function

	Security
	Securing Amazon Rekognition Custom Labels projects
	Securing DetectCustomLabels
	AWS managed policies

	Guidelines and quotas in Amazon Rekognition Custom Labels
	Supported Regions
	Quotas
	Training
	Testing
	Detection
	Model copying

	Amazon Rekognition Custom Labels API reference
	Training your model
	Projects
	Project Policies
	Datasets
	Models
	Tags

	Using your model

	Document history for Amazon Rekognition Custom Labels

